2022年新人教版高中数学必修4知识点总结 .pdf
_ 精品资料高中数学必修 4 知识点总结第一章:三角函数1.1.1、任意角1、正角、负角、零角、象限角的概念.2、与角终边相同的角的集合:Zkk,2.1.1.2、弧度制1、把长度等于半径长的弧所对的圆心角叫做1 弧度的角.2、rl.3、弧长公式:RRnl180.4、扇形面积公式:lRRnS213602.1.2.1、任意角的三角函数1、设是一个任意角,它的终边与单位圆交于点yxP,,那么:xyxytan,cos,sin2、设点,A xy为角终边上任意一点,那么:(设22rxy)sinyr,cosxr,tanyx,cotxy3、sin,cos,tan在四个象限的符号和三角函数线的画法.正弦线:MP;余弦线:OM;正切线:AT4、特殊角 0,30,45,60,90,180,270 等的三角函数值.0 64322334322sincostan1.2.2、同角三角函数的基本关系式1、平方关系:1cossin22.2、商数关系:cossintan.3、倒数关系:tancot11.3、三角函数的诱导公式(概括为“奇变偶不变,符号看象限”Zk)TMAOPxy_ 精品资料1、诱导公式一:.tan2tan,cos2cos,sin2sinkkk(其中:Zk)2、诱导公式二:.tantan,coscos,sinsin3、诱导公式三:.tantan,coscos,sinsin4、诱导公式四:.tantan,coscos,sinsin5、诱导公式五:.sin2cos,cos2sin6、诱导公式六:.sin2cos,cos2sin1.4.1、正弦、余弦函数的图象和性质1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.3、会用五点法作图.sinyx在0,2 x上的五个关键点为:30 010-1 2022(,)(,)(,)(,)(,).1.4.3、正切函数的图象与性质1、记住正切函数的图象:1-1y=cosx-32-52-727252322-2-4-3-2432-oyx1-1y=sinx-32-52-727252322-2-4-3-2432-oyx文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5_ 精品资料y=tanx322-32-2oyx2、记住余切函数的图象:y=cotx3222-2oyx3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数xf,如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有xfTxf,那么函数xf就叫做周期函数,非零常数T 叫做这个函数的周期.文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5_ 精品资料图表归纳:正弦、余弦、正切函数的图像及其性质xysinxycosxytan图象定义域RR,2|Zkkxx值域-1,1-1,1 R最值maxmin2,122,12xkkZyxkkZy时,时,maxmin2,12,1xkkZyxkkZy时,时,无周期性2T2TT奇偶性奇偶奇单调性Zk在2,222kk上单调递增在32,222kk上单调递减在2,2kk上单调递增在2,2kk上单调递减在(,)22kk上 单 调 递增对称性Zk对称轴方程:2xk对称中心(,0)k对称轴方程:xk对称中心(,0)2k无对称轴对称中心,0)(2k1.5、函数xAysin的图象1、对于函数:sin0,0yAxB A有:振幅 A,周期2T,初相,相位x,频率21Tf.2、能够讲出函数xysin的图象与sinyAxB的图象之间的平移伸缩变换关系.先平移后伸缩:sinyx平移|个单位sinyx(左加右减)横坐标不变sinyAx纵坐标变为原来的A倍纵坐标不变sinyAx文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5_ 精品资料横坐标变为原来的1|倍平移|B个单位sinyAxB(上加下减)先伸缩后平移:sinyx横坐标不变sinyAx纵坐标变为原来的A倍纵坐标不变sinyAx横坐标变为原来的1|倍平移个单位sinyAx(左加右减)平移|B个单位sinyAxB(上加下减)3、三角函数的周期,对称轴和对称中心函数sin()yx,xR及函数cos()yx,xR(A,为常数,且A0)的周期2|T;函数tan()yx,,2xkkZ(A,为常数,且A 0)的周期|T.对于sin()yAx和cos()yAx来说,对称中心与零点相联系,对称轴与最值点联系.求函数sin()yAx图像的对称轴与对称中心,只需令()2xkkZ与()xkkZ解出x即可.余弦函数可与正弦函数类比可得.4、由图像确定三角函数的解析式利用图像特征:maxmin2yyA,maxmin2yyB.要根据周期来求,要用图像的关键点来求.1.6、三角函数模型的简单应用1、要求熟悉课本例题.第三章、三角恒等变换3.1.1、两角差的余弦公式记住 15的三角函数值:sincostan12426426323.1.2、两角和与差的正弦、余弦、正切公式1、sincoscossinsin文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5_ 精品资料2、sincoscossinsin3、sinsincoscoscos4、sinsincoscoscos5、tantan1 tantantan.6、tantan1 tantantan.3.1.3、二倍角的正弦、余弦、正切公式1、cossin22sin,变形:12sincossin2.2、22sincos2cos1cos222sin21.变形如下:升幂公式:221cos22cos1cos22sin降幂公式:221cos(1cos2)21sin(1 cos2)23、2tan1tan22tan.4、sin 21cos2tan1cos2sin 23.2、简单的三角恒等变换1、注意正切化弦、平方降次.2、辅助角公式)sin(cossin22xbaxbxay(其中辅助角所在象限由点(,)a b的象限决定,tanba).第二章:平面向量2.1.1、向量的物理背景与概念1、了解四种常见向量:力、位移、速度、加速度.2、既有大小又有方向的量叫做向量.2.1.2、向量的几何表示1、带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、向量AB的大小,也就是向量AB的长度(或称模),记作ABuuu r;长度为零的向量叫做零向量;长度等于 1个单位的向量叫做单位向量.3、方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5文档编码:CO6L2T2T2M9 HB6L2M7O1V4 ZG5P4I10T6E5