欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    离散系统的系统函数知识讲解.ppt

    • 资源ID:60600799       资源大小:1.48MB        全文页数:22页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    离散系统的系统函数知识讲解.ppt

    X第第第第 1 1 页页页页离散系统的系统函数X第第第第 2 2 页页页页 只与系统的差分只与系统的差分方程的方程的系数、结构系数、结构有有关,描述了系统的固关,描述了系统的固有有特性。特性。2单位响应3.系统的零状态响应系统的零状态响应X第第第第 3 3 页页页页4.系统函数的求解(重点)系统函数的求解(重点)例1(自学)则则解:解:求系统的零状态响应求系统的零状态响应在零状态条件下,对差分方程两边取单边在零状态条件下,对差分方程两边取单边z变换变换已知离散系统的差分方程为:已知离散系统的差分方程为:激励激励XX第第第第 5 5 页页页页二系统函数的零极点分布对系统特性的影响1.1.由零极点分布确定单位响应由零极点分布确定单位响应2.2.离散系统的稳定性离散系统的稳定性3.3.系统的因果性系统的因果性X第第第第 6 6 页页页页1由零极点分布确定单位响应展成部分分式:(假设无重根)展成部分分式:(假设无重根)1)H(z)1)H(z)为单极点为单极点X第第第第 7 7 页页页页 极点的性质,决定了极点的性质,决定了 的特性。其规律可能是指的特性。其规律可能是指数衰减、上升,或为减幅、增幅、等幅振荡。数衰减、上升,或为减幅、增幅、等幅振荡。2)H(z)2)H(z)为共轭单极点时为共轭单极点时:共轭单极点共轭单极点实数单极点实数单极点系统函数的零点只影响系统函数的零点只影响h(k)的幅度和相位的幅度和相位.X第第第第 8 8 页页页页极点位置与极点位置与h h(k)(k)形状的关系形状的关系(因果序列)因果序列)X第第第第 9 9 页页页页根据极点分布或收敛域判断系统的稳定性根据极点分布或收敛域判断系统的稳定性1.H(z)极点全部在单位园内极点全部在单位园内,h(k)衰减衰减,系统稳系统稳定定2.H(z)极点只要有一个在单位园外极点只要有一个在单位园外,或单位园上有二重或单位园上有二重极点极点(包括包括z=1),h(k)增幅增幅,系统不稳定系统不稳定.3.H(z)在单位园上有单极点在单位园上有单极点(包括包括z=1),h(k)等幅或等等幅或等幅振荡幅振荡,系统处于临界稳定系统处于临界稳定.注意注意:1)对于低阶系统根据系统函数的极点分布判断系)对于低阶系统根据系统函数的极点分布判断系统的稳定较易实现统的稳定较易实现,但对于高阶系统求特征根(极点)不但对于高阶系统求特征根(极点)不容易,可采用朱里准则(根据特征方程系数)判断容易,可采用朱里准则(根据特征方程系数)判断.2)对一般系统稳定判断原则是:)对一般系统稳定判断原则是:H(z)收敛域是否包含单位园,如包含则系统稳定收敛域是否包含单位园,如包含则系统稳定H(s)收敛域是否包含虚轴,如包含则系统稳定收敛域是否包含虚轴,如包含则系统稳定对因果系统:对因果系统:X第第第第 1 10 0 页页页页zs平面的映射关系(自学)平面的映射关系(自学)X第第第第 1 11 1 页页页页s平面平面z平面平面极点位置极点位置h(t)特点特点极点位置极点位置h(k)特点特点虚轴上虚轴上等幅等幅单位圆上单位圆上等幅等幅原点原点s=0 左半平面左半平面收敛域含虚轴收敛域含虚轴衰减衰减(稳定稳定)单位圆内单位圆内收敛域含单位园收敛域含单位园减幅减幅(稳定稳定)右半平面右半平面增幅增幅单位圆外单位圆外增幅增幅因果系统函数极点与因果系统函数极点与h(t),h(k)响应的关系响应的关系X第第第第 1 12 2 页页页页2离散系统的稳定性对于稳定系统,只要输入是有界的,输出必对于稳定系统,只要输入是有界的,输出必定是有界的。定是有界的。(2)(2)稳定性判据稳定性判据(1)定义:定义:判据判据1 1:(时域判断):(时域判断)离散系统稳定的充要条件:单位序列响应绝对可和。离散系统稳定的充要条件:单位序列响应绝对可和。判据判据2 2:(:(z z域判断)域判断)对于因果系统,其稳定的充要条件为:对于因果系统,其稳定的充要条件为:H(z)的全部极点应落在单位圆之内。即收敛域应包括单的全部极点应落在单位圆之内。即收敛域应包括单位圆在内。位圆在内。X第第第第 1 13 3 页页页页3.因果连续系统和离散系统稳定性的比较 单位园上有单单位园上有单极点极点虚轴上有单极虚轴上有单极点点临界稳定的极临界稳定的极点点含单位圆的圆含单位圆的圆外外含虚轴的右半含虚轴的右半平面平面收敛域收敛域H(z)的极点全部的极点全部在单位圆内在单位圆内H(s)的极点全的极点全部在左半平面部在左半平面 因果序列:因果序列:极点极点系统稳定的充系统稳定的充要条件要条件离散系统离散系统连续系统连续系统对任何线性系统稳定判据:对任何线性系统稳定判据:收敛域含单位园收敛域含单位园X第第第第 1 14 4 页页页页4系统的因果性系统因果性的判断方法:系统因果性的判断方法:z域:系统函数的收敛域在以极点模值最大为域:系统函数的收敛域在以极点模值最大为 收敛半径的园外。收敛半径的园外。输出不超前于输入的系统输出不超前于输入的系统X第第第第 1 15 5 页页页页例解:解:不稳定系统不稳定系统从时域判断从时域判断因果系统因果系统从从z域判断域判断极点在单位圆上,收敛域不包括单位圆极点在单位圆上,收敛域不包括单位圆不稳定(临不稳定(临界稳定)。界稳定)。h(k)为右边序列,收敛域为圆外,为因果系统。为右边序列,收敛域为圆外,为因果系统。X第第第第 1 16 6 页页页页 例2LTILTI系统,系统,判断因果性、稳定性。,判断因果性、稳定性。注意:注意:对于因果系统,极点全部在单位圆内则稳定。对于因果系统,极点全部在单位圆内则稳定。不稳定不稳定从从z域判断域判断:收敛域收敛域 ,极点在处,极点在处 ,是非因果系统,收敛域不包含单位圆,系统不稳定。是非因果系统,收敛域不包含单位圆,系统不稳定。从时域判断从时域判断:不是因果系统不是因果系统 X第第第第 1 17 7 页页页页例3解:解:分别取分别取z变换变换系统框图如下,求系统框图如下,求H(z),h(k)。方法:设中间序列方法:设中间序列w(k)列差分方程列差分方程X第第第第 1 18 8 页页页页例4解:解:分子分母同除以分子分母同除以z的最高次幂的最高次幂画出系统的框图为:画出系统的框图为:X第第第第 1 19 9 页页页页例题例题5欲使系统图示系统稳定欲使系统图示系统稳定,试确定试确定k的取值范围的取值范围例题例题6X第第第第 2 20 0 页页页页5.LTI系统对复指数序列的响应系统对复指数序列的响应对离散时间系统,如对离散时间系统,如说明:说明:1.1.对复指数序列的响应同样是一个复指数序列,只是对复指数序列的响应同样是一个复指数序列,只是在幅度上的变化;在幅度上的变化;2.2.对给定对给定z z值,即值,即系统响应是一个是常数(可能是复数)乘以输入,则:系统响应是一个是常数(可能是复数)乘以输入,则:系统的特征函数系统的特征函数系统的特征值系统的特征值X第第第第 2 21 1 页页页页例题例题7 根据上述条件求解下列问题:a)试确定常数a的值;b)试确定系统函数,画出零极点图,标出收敛域,并判断系统的稳定性;已知某离散时间LTI系统满足下列条件:1)当输入信号时,系统的输出2)系统的单位阶跃响应为c)写出该系统差分方程;d)若输入序列试求系统的零状态响应X第第第第 2 22 2 页页页页此课件下载可自行编辑修改,仅供参考!此课件下载可自行编辑修改,仅供参考!感谢您的支持,我们努力做得更好!谢谢感谢您的支持,我们努力做得更好!谢谢

    注意事项

    本文(离散系统的系统函数知识讲解.ppt)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开