高中数学基本知识点汇总.pdf
本文来源:网络收集与整理|word 可编辑高中数学基本知识点汇总高中数学基本知识点汇总高中数学基本知识点:第一:函数与导数(1)三阶段:1)学习函数概念、图象、性质。以指对函数为例,重点学习函数与反函数及单调性2)以三角函数为例,重点学习奇偶性与周期性 3)学习函数极限、连续性、导数。最终落在导数应用注:(文科)解析式选用多项式函数。(理科)指、对、三角函数为载体选择、填空多考查图象、反函数、奇偶性、极限、连续性、导数的几何意义第二:数列:在高考中占重要地位(1)重点研究等差数列、等比数列,主要是通项公式及前 n 项和公式(2)通过比较抽象数列入手,进行严格的逻辑推证(3)通项与前 n 项和的重要关系注:选择、填空多突出函数与方程思想、数形结合、特殊与一般、有限与无限的考查。第三:不等式:(1)学习不等式性质、简单不等式解法、不等式证明、不等式应用(2)删去无理不等式、保留二次不等式、分式不等式、含绝对值简单不等式、简单指对不等式,均值定理只考虑两个正数1/11本文来源:网络收集与整理|word 可编辑注:选择、填空多考查解不等式的同解变形、数形结合、特殊化思想、均值定理,解答题多考查解不等式、不等式证明、含参数不等式、与函数导数数列相结合(知识网络交汇)第四:三角函数同角公式由 8 个删为 3 个,删去余切诱导公式,删去半角公式、积化和差公式,删去反三角函数与简单三角方程绝大部分内容,只保留反正弦、反余弦、反正切意义与符号表示新增内容:平面向量、极限与导数作了替代突出考查三角函数图象与性质第五:立体几何新增空间向量方法,开拓了高考命题思路,删去圆柱、圆台。只保留了球,删去了棱台,保留了棱柱、棱锥空间向量将几何元素数量化,显现解题优势第六:解析几何(1)着重考查解析几何基本思想,利用代数工具研究几何题目是解析几何基本特点和性质(3)在解题过程中计算占了很大比例,对运算能力有较高要求(4)曲线定义和性质是解题基础(5)突出考查函数与方程思想、数形结合、特殊与一般第七:概率与统计(1)在工农业和社会生活中有广泛应用(2)是重要的处理问题方法与重要数学工具之一(3)必修方面:随机事件的概率、等可能性事件的概率、互斥事件2/11本文来源:网络收集与整理|word 可编辑有一个发生的概率、相互独立事件概率、独立重复试验。选修方面:(文)抽样、总体分布的估计(理)离散型随机变量的分布列、数学期望、方差、抽样、总体分布的估计注:贴近生活,注重基础知识和基本方法扩展阅读:高中数学基本知识点总结1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等?4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于 18018 推论 1 直角三角形的两个锐角互余 19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等22 边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理3/11本文来源:网络收集与整理|word 可编辑(SSS)有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 27 定理 1 在角的平分线上的点到这个角的两边的距离相等28 定理 2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33推论 3 等边三角形的各角都相等,并且每一个角都等于 6034 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论 1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于 60的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于 30那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42定理 1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46 勾股定理直角三角形两直角边 a、b 的平方和、等4/11本文来源:网络收集与整理|word 可编辑于斜边 c 的平方,即 a2+b2=c247 勾股定理的逆定理如果三角形的三边长a、b、c 有关系 a2+b2=c2,那么这个三角形是直角三角形 48 定理四边形的内角和等于 36049 四边形的外角和等于 36050 多边形内角和定理 n 边形的内角的和等于(n-2)18051 推论任意多边的外角和等于 36052 平行四边形性质定理 1 平行四边形的对角相等53 平行四边形性质定理 2 平行四边形的对边相等 54 推论夹在两条平行线间的平行线段相等 55 平行四边形性质定理 3 平行四边形的对角线互相平分56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形 58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形 59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形60 矩形性质定理 1 矩形的四个角都是直角 61 矩形性质定理 2 矩形的对角线相等62 矩形判定定理 1 有三个角是直角的四边形是矩形 63 矩形判定定理 2对角线相等的平行四边形是矩形 64 菱形性质定理 1 菱形的四条边都相等65 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66 菱形面积=对角线乘积的一半,即 S=(ab)267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理 2 对角线互相垂直的平行四边形是菱形69 正方形性质定理 1 正方形的四个角都是直角,四条边都相等70 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71 定理 1 关于中心对称的两个图形是全等的5/11本文来源:网络收集与整理|word 可编辑72 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74 等腰梯形性质定理等腰梯形在同一底上的两个角相等 75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形 77 对角线相等的梯形是等腰梯形78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半 82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)2S=Lh83(1)比例的基本性质如果 a:b=c:d,那么 ad=bc 如果 ad=bc,那么a:b=c:dwc/S?84(2)合比性质如果 ab=cd,那么(ab)b=(cd)d85(3)等比性质如果 ab=cd=mn(b+d+n0),那么(a+c+m)(b+d+n)=ab86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例 87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例6/11本文来源:网络收集与整理|word 可编辑88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理 2两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理 3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理 2 相似三角形周长的比等于相似比98 性质定理 3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合 103 圆的外部可以看作是圆心的距离大于半径的点的集合 104 同圆或等圆的半径相等7/11本文来源:网络收集与整理|word 可编辑105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。110 垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111 推论 1平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112 推论 2 圆的两条平行弦所夹的弧相等 113 圆是以圆心为对称中心的中心对称图形114 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116 定理一条弧所对的圆周角等于它所对的圆心角的一半 117 推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118 推论 2 半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径119 推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形8/11本文来源:网络收集与整理|word 可编辑120 定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121直线 L 和O 相交 dr直线 L 和O 相切 d=r直线 L 和O 相离 dr122 切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线 123 切线的性质定理圆的切线垂直于经过切点的半径 124 推论 1 经过圆心且垂直于切线的直线必经过切点 125 推论 2 经过切点且垂直于切线的直线必经过圆心126 切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127 圆的外切四边形的两组对边的和相等128 弦切角定理弦切角等于它所夹的弧对的圆周角129 推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130 相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131 推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132 切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133 推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134 如果两个圆相切,那么切点一定在连心线上 135两圆外离 dR+r两圆外切 d=R+r两圆相交 R-rdR+r(Rr)9/11本文来源:网络收集与整理|word 可编辑两圆内切 d=R-r(Rr)两圆内含 dR-r(Rr)136 定理相交两圆的连心线垂直平分两圆的公*弦 137 定理把圆分成 n(n3):依次连结各分点所得的多边形是这个圆的内接正 n 边形经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正 n 边形138 定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139 正 n 边形的每个内角都等于(n-2)180n140 定理正 n 边形的半径和边心距把正 n 边形分成 2n 个全等的直角三角形 141 正 n 边形的面积 Sn=pnrn2p 表示正 n 边形的周长 142 正三角形面积3a4a 表示边长143 如果在一个顶点周围有 k 个正 n 边形的角,由于这些角的和应为360,因此 k(n-2)180n=360化为(n-2)(k-2)=4144 弧长扑愎剑=n 兀 R180145 扇形面积公式:S 扇形=n 兀 R2360=LR2146 内公切线长=d-(R-r)外公切线长=d-(R+r)(还有一些,大家帮补充吧)实用工具:常用数学公式公式分类公式表达式乘法与因式分解 a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|a|+|b|a-b|a|+|b|a|b-bab|a-b|a|-|b|-|a|a|a|一元二次方程的解-b+(b2-4ac)/2a-b-(b2-4ac)/2a 根与系数的关系 X1+X2=-b/aX1*X2=c/a 注:韦达定理判别式10/11本文来源:网络收集与整理|word 可编辑b2-4ac=0 注:方程有两个相等的实根 b2-4ac0 注:方程有两个不等的实根 b2-4ac 抛物线标准方程 y2=2pxy2=-2pxx2=2pyx2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c*h正棱锥侧面积 S=1/2c*h正棱台侧面积 S=1/2(c+c)h圆台侧面积S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*ra 是圆心角的弧度数 r0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=SL 注:其中,S是直截面面积,L 是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h友情提示:本文中关于高中数学基本知识点汇总给出的范例仅供您参考拓展思维使用,高中数学基本知识点汇总:该篇文章建议您自主创作。11/11