高一数学集合知识点总结.pdf
集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。(4)集合元素的三个特性使集合本身具有了确定性和整体性。3、集合的表示:如我校的篮球队员,太平洋,大西洋,印度洋,北冰洋1.用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,52集合的表示方法:列举法与描述法。注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或 N+整数集 Z有理数集 Q实数集 R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a 是集合 A 的元素,就说 a 属于集合 A 记作 aA,相反,a 不属于集合 A 记作 aA列举法:把集合中的元素一一列举出来,然后用一个大括号括上。描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。语言描述法:例:不是直角三角形的三角形数学式子描述法:例:不等式 x-32 的解集是xR|x-32或x|x-324、集合的分类:1有限集含有有限个元素的集合2无限集含有无限个元素的集合3空集不含任何元素的集合例:x|x2=5二、集合间的基本关系1.“包含”关系子集注意:有两种可能(1)A 是 B 的一部分,;(2)A 与 B 是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2“相等”关系(55,且 55,则 5=5)实例:设A=x|x2-1=0B=-1,1“元素相同”结论:对于两个集合 A 与 B,如果集合 A 的任何一个元素都是集合 B的元素,同时,集合 B 的任何一个元素都是集合 A 的元素,我们就说集合 A 等于集合 B,即:A=B规定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的运算1交集的定义:一般地,由所有属于A 且属于 B 的元素所组成的集合,叫做 A,B 的交集记作 AB(读作”A 交 B”),即 AB=x|xA,且 xB2、并集的定义:一般地,由所有属于集合A 或属于集合 B 的元素所组成的集合,叫做 A,B 的并集。记作:AB(读作”A 并 B”),即 AB=x|xA,或 xB3、交集与并集的性质:AA=A,A=,AB=BA,AA=A,A=A,AB=BA4、全集与补集(1)补集:设 S 是一个集合,A 是 S 的一个子集(即),由 S 中所有不属于 A 的元素组成的集合,叫做 S 中子集 A 的补集(或余集)记作:CS=A(2)全集:如果集合 S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U 来表示。