中南大学线性代数-5.1-5.2-二次型及其标准形教学提纲.ppt
-
资源ID:60888761
资源大小:1.39MB
全文页数:27页
- 资源格式: PPT
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
中南大学线性代数-5.1-5.2-二次型及其标准形教学提纲.ppt
中南大学线性代数中南大学线性代数-5.1-5.1-5.2-5.2-二次型及其标准形二次型及其标准形一、二次型及其标准形的概念称为二次型称为二次型.只含有平方项的二次型只含有平方项的二次型称为二次型的称为二次型的标准形标准形(或法式)(或法式)若标准形的系数只取若标准形的系数只取1 1,-1-1或或0 0,即,即称为二次型的称为二次型的规范形规范形1 1用和号表示用和号表示对二次型对二次型二、二次型的表示方法2 2用矩阵表示用矩阵表示在二次型的矩阵表示中,任给一个二次型,在二次型的矩阵表示中,任给一个二次型,就唯一地确定一个对称矩阵;反之,任给一个对就唯一地确定一个对称矩阵;反之,任给一个对称矩阵,也可唯一地确定一个二次型这样,二称矩阵,也可唯一地确定一个二次型这样,二次型与对称矩阵之间存在次型与对称矩阵之间存在一一对应一一对应的关系的关系解解例例设设三、化二次型为标准形对于二次型,我们讨论的主要问题是:寻求对于二次型,我们讨论的主要问题是:寻求可逆的线性变换,将二次型化为标准形可逆的线性变换,将二次型化为标准形则矩阵的合同是一种等价关系,具有性质:矩阵的合同是一种等价关系,具有性质:说明说明用用正交变换化二次型为标准形正交变换化二次型为标准形的具体步骤的具体步骤解解1 1写出对应的二次型矩阵,并求其特征值写出对应的二次型矩阵,并求其特征值例例2 2从而得特征值从而得特征值2.2.求特征向量求特征向量即得正交向量组即得正交向量组对于实对称阵不同特征值的特征向量正交,3 3将正交向量组单位化将正交向量组单位化于是所求正交变换为于是所求正交变换为解解例例3 31.若二次型含有若二次型含有 的平方项,则先把含有的平方项,则先把含有 的乘积项集中,进行配方,使得配方后的项中的乘积项集中,进行配方,使得配方后的项中不再含有这个变量,再对其余的变量同样进行,不再含有这个变量,再对其余的变量同样进行,直到都配成平方项为止,经过这样的非退化线性直到都配成平方项为止,经过这样的非退化线性变换,就得到标准形变换,就得到标准形;拉格朗日配方法拉格朗日配方法,步骤如下:2.若二次型中不含有平方项,但是若二次型中不含有平方项,但是 则先作可逆线性变换则先作可逆线性变换化二次型为含有平方项的二次型,然后再按化二次型为含有平方项的二次型,然后再按1中方中方法配方法配方.化二次型为标准形,若不限于正交变换,则可用解解例例1 1含有平方项含有平方项去掉配方后多出来的项去掉配方后多出来的项所用变换矩阵为所用变换矩阵为解解例例2 2由于所给二次型中无平方项,所以由于所给二次型中无平方项,所以再配方,得再配方,得所用变换矩阵为所用变换矩阵为说明:用不同的可逆线性变换把同一个二次型化为说明:用不同的可逆线性变换把同一个二次型化为标准形时,二次型的标准形不是唯一的,但规范性标准形时,二次型的标准形不是唯一的,但规范性是唯一的是唯一的.五、小结1.二次型及其标准形的概念二次型及其标准形的概念3.二次型化为标准形的方法:二次型化为标准形的方法:2.二次型的矩阵、二次型的秩、矩阵合同二次型的矩阵、二次型的秩、矩阵合同拉格朗日配方法拉格朗日配方法正交变换法正交变换法(标准形中的系数为其特征值)(标准形中的系数为其特征值)结束结束