二次函数教学课件(共20篇).docx
二次函数教学课件(共20篇)第1篇:二次函数复习课教学反思 二次函数复习课教学反思 福鼎七中 周克锋2022.5.20 二次函数对学生来讲,既是难点又是重点,通过我对这一章的教学,让我学到很多道理和教学方法。下面是我对二次函数的复习课的一些反思感受:首先,我认为在课堂上,我对知识的掌握还是有一定的欠缺,把二次函数用自己的眼光和感受想象的太简单,但是对于学生而言,这又是一个重点,尤其是一个难点。所以我课堂上有的习题深度没有掌握好,没有做到面向全体。 其次,本节课体现的是分层教学,而我只是在后面的比赛中简单的体现分层,对于提问中得分层,习题中的分层还是做的不够好,这说明我对于分层教学的这种方法还是有待于进一步的提高,应该真正的站在学生的角度来分层。 第三,课堂上的语言不够精辟,尤其是评价性的话语很少,很单调。没有做到让学生为我的一句话而振奋,没有因为为了争得我的一句话而好好做题等等,这是我一直以来欠缺的一个重要点。 那么针对以上几点,我从自己的角度思考,收获了以下这些: 1.上课之前一定要反复的推敲,琢磨课本,找出本节课知识的“灵魂”,然后站在学生的角度,仔细研究,如何讲授学生们才能愿意听,才能听得明白。尤其不能把学生想像的水平很高,不是不自信,而是不能把学生逼到“危险之地”,以免打击自尊心,熄灭刚刚点燃的兴趣之光。真正做到“低起点”。 2.既然选择和实施了分层教学,就应该多下功夫去琢磨,去进行它。既然是分层就应该把它做到“顺其自然”,而不仅仅是一种形式。在分层的同时应该找到一个点,就是说,这个点上的问题是承上启下的,是应该全班都能够掌握的。对于尖子生,不能在课堂上想让他们吃饱,对于他们应该在课下,或者是采用小纸条的方法单独来测试,不能为了他们的能力把题目难度定的过高。再者,分层应该体现在一节课的所有环节,例如,在提问时,对于一个问题应该分层次来提,来回答。 3.应该及时地,迅速的提高自己的言语水平。 一堂课的精彩与否,教师的课堂语言也是很重要的一个方面,例如一节课的讲授过程,或者是对于学生的评价等等。 督促自己多读书,多练习,以丰富自己的语言。 4.最后,我觉得自己真的需要多学习,多见识,这样才能提高,才能迅速的提高。对于自己的优势,我也看到了,那就是我的教学之路很长,很多方法,很多思路都有时间,有条件去尝试,所以在以后的工作中要多动脑,多为学生着想。俗话说“天下无难事,只怕有心人”,所以只要我认真的付出,认真的思考,我想我的明天会是美好的。 第2篇:二次函数复习课 教学设计 二次函数复习课 教学设计 和平中学 任广香 一、教材分析 1地位和作用 : (1)二次函数是初中数学中最基本的概念之一,贯穿于整个初中数学体系之中,也是实际生活中数学建模的重要工具之一,二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届中考试题中,二次函数 都是不可缺少的内容。 (2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。 (3)二次函数与一元二次方程知识的联系,使学生能更好地将所学知识融会贯通。 2课标要求: 通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。 会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。 会根据公式确定图象的顶点、开口方向和对称轴,平移,并能解决简单的实际问题。 会利用二次函数的图象求与x、y轴的交点坐标。 3学情分析 (1)九年级学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。 (2)学生的分析、理解能力、学习新课时有明显提高。 (3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。 (4)学生能力差异较大,两极分化明显。 4教学目标 认知目标: (1)掌握二次函数 y=ax2+bx+c图像与系数符号之间的关系。 (2)通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力.能力目标:提高学生对知识的整体合作能力和分析能力。 情感目标:制作动画增加直观效果,激发学生兴趣,感受数学之美.在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。 5教学重点与难点: 重点:(!)掌握二次函数y=ax2+bx+c图像与系数符号之间的关系。 (2) 各类形式的二次函数解析式的求解方法和思路.难点:(1)已知二次函数的解析式说出函数性质 (2)运用数形结合思想,选用恰当的数学关系式解决问题. 二、教学方法: 1.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合学生的求知心理和已有的认知水平开展教学。形成学生自动、生生互动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。 2将知识点分类,让学生通过这个框架结构很容易看出不同解析式表示的二次函数的内在联系,让学生形成一个清晰、系统、完整的知识网络。 3运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。 三、学法指导: 1学法引导 “授人以鱼,不如授人之渔”在教学过程中,不但要传授学生基本知识,还要培育学生主动思考,亲自动手,自我发现等能力,增强学生的综合素质,从而达到教学目标。 2学法分析:新课标明确提出要培养自我探究能力,因此教师有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。 3、设计理念:对于课程实施和教学过程,教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要” 4、设计思路:不把复习课简单地看作知识点的复习和习题的训练,而是通过复习旧知识,拓展学生思维,提高学生学习能力,增强学生分析问题,解决问题的能力。 四、教学过程: 1、教学环节设计: 根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点 本节课的教学设计环节: (1)、创设情境,引入新知 :复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”。学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排由浅入深的题、让每一个学生都能为下一步的探究做好准备。 (2)、自主探究,合作交流:本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。 (3)、运用知识,体验成功:根据不同层次的学生,同时配有两个由低到高、层次不同的巩固性习题,体现渐进性原则,希望学生能将知识转化为技能。让每一个学生获得成功,感受成功的喜悦。 (一)学习内容: 1、定义 2、解析式 3、顶点与对称轴 4、图像位置 教师以复习内容为中心,层层深入,触类旁通地引导学生参与学习过程。 (二)基础演练 通过精心的选题让学生演练,教师引导下完成,达到巩固知识的作用。 (三)思维拓展与应用 既培养学生运用知识的能力,又培养学生的创新意识。引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。 (四)方法与小结 由总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题 2、作业设计:(题签) 3、板书设计:(见课件) 五、评价分析: 本节课的设计,我以学生活动为主线,通过“观察、分析、探索、交流”等过程,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。本节教学过程主要由创设情境,引入新知合作交流;探究新知运用知识,体验成功;知识深化应用提高;归纳小结形成结构等环节构成,环环相扣,紧密联系,体现了让学生成为行为主体即“动手实践、自主探索、合作交流“的数学新课标要求。本设计同时还注重发挥多媒体的辅助作用,使学生更好地理解数学知识;贯穿整个课堂教学的活动设计,让学生在活动、合作、开放、探究、交流中,愉悦地参与数学活动的数学教学。让学生乐学、会学、学会,这样才是我们的教学目标,同时让教师充满爱学生,乐教的风格。慢慢的形成了一种良性的循环,信其师学其道。 第3篇:二次函数教学设计 教学内容: 人教版九年义务教育初中第三册第108页 教学目标: 1.1.理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念; 2.2.通过变式教学,培养学生思维的敏捷性、广阔性、深刻性; 3.3.通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识,第五册二次函数教学设计。 教学重点: 二次函数的意义;会画二次函数图象。 教学难点: 描点法画二次函数y=ax2的图象,数与形相互联系。 教学过程设计: 一.一.创设情景、建模引入 我们已学习了正比例函数及一次函数,现在来看看下面几个例子: 1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式 答:S=R2. 2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系 答:S=L(30-L)=30L-L2 分析:两个关系式中S与R、L之间是否存在函数关系? S是否是R、L的一次函数? 由于两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢? 答:二次函数。 这一节课我们将研究二次函数的有关知识。(板书课题) 二.二.归纳抽象、形成概念 一般地,如果y=ax2+bx+c(a,b,c是常数,a0) , 那么,y叫做x的二次函数.注意:(1)必须a0,否则就不是二次函数了.而b,c两数可以是零.(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数. 练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。 2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。 (若学生考虑不全,教师给予补充。如: ; ; ; 的形式。) (通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。) 由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。 (在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。) 三.三.尝试模仿、巩固提高 让我们先从最简单的二次函数y=ax2入手展开研究 1.1.尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢? 请同学们画出函数y=x2的图象。 (学生分别画图,教师巡视了解情况。) 2.2.模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。 解: 一、列表: x - 3- 2- 112 3Y=x2 941 1 49 二、描点、连线: 按照表格,描出各点.然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来.对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意,初中数学教案第五册二次函数教学设计。 练习:画出函数 ; 的图象(请两个同学板演) X - 3- 2- 112 3Y=0.5X2 4. 520.5 0.5 02 4.5 Y=-X2 -9 - 4-1 -1 -4 -9 画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数 y=ax2的图象是一条抛物线。 (这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。) 三.三.运用新知、变式探究 画出函数 y=5x2图象 学生在画图象的过程中遇到函数值较大的困难,不知如何是好。 第4篇:二次函数教学反思 二次函数单元教学反思 第二十六章二次函数是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型。和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。 下面是我通过本单元的的教学后的的几点反思: “二次函数概念”教学反思 关于“二次函数概念”教后做如下反思:我的成功之处是:教学时,通过实例引入二次函数的概念, 让学生明确二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型。通过学习求一些简单的实际问题中二次函数的解析式和它的定义域;大部分学生重视了二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义。绝大多数学生理解了二次函数的概念;掌握了二次函数的一般表达式以及二次项和二次项的系数、一次项和一次项的系数及常数项。 不足之处表现在:少数学生不能正确判定一个函数是否是二次函数。 “二次函数的图像及性质”教学反思 关于“二次函数的图象和性质”教后做如下反思:我的成功之处是:在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。 通过引导学生在坐标纸上画出二次函数y=ax2的图象。画图的过程包括列表、描点、连线。列表过程是我引导学生取点的,其间我引导学生要明确取点注意的事项,比如代表性、易操作性。学生在我的引导下顺利地画出了函数的图象。紧接着我让学生观察图像自主探讨当a>0时函数y=ax2的性质。当a y=a(x-h) 2、y=a(x-h)2+c 的图像,绝大多数学生很快掌握了图形平移的规律,理解了平移后图像的性质。达到了学习目标中的要求。 不足之处表现在: 1、课堂上讲的太多。让学生自主观察总结的机会少,学生还是被动的接受。 2、学生作图能力差。简单的列表、描点、连线。学生做起来就比较困难。作图中单位长度不准确,描点不正确,连线时不会用光滑的曲线,而是画出很难看的图形。 3、合作学习的有效性不够。对于老师提出的问题,各组汇报讨论结果的效果不明显。说明自主、探究、合作的学习方式没有落到实处,没能培养学生的创新能力。 4、少数学生二次函数图像平移变换能力差。不会进行二次函数图像的平移变换。 “求二次函数解析式”教学反思 关于“求二次函数解析式”教后做如下反思:我的成功之处是:教学中,我设计从求一次函数的解析式入手,引出求二次函数一般解析式的方法。学生把已知点代入二次函数的一般解析式,很快就得出了三元一次方程组,学生很快就理解了求二次函数一般解析式的方法。接着我改变条件,给出抛物线的顶点坐标和经过抛物线的一个点,引导学生设顶点式的二次函数解析式,学生在老师的点拨下,将已知点代入,很快球出了顶点式的二次函数解析式。接下来,我又引导学生观察抛物线与x轴的交点,启发学生设交点式解析式,学生很快就学会了用交点式求二次函数解析式的方法。在整个教学中,教学内容、教学环节、教学方法的设计都算完美,在教学目标的制定和教学重点、难点的把握上也很准确,调动学生学习的积极性和主动性,所以教学非常流畅,效果不错,目标的达成度较高。 不足之处表现在: 1、学生对新学知识理解了,但一部分学生不会解三元一次方程组。 2、少数学生对求顶点式和交点式的二次函数解析式有困难。 3、由于对学生估计不足,引导学生探究三种不同形式的函数解析式的方法用时较多,导致教学时间紧张。 “二次函数应用题”教学反思 关于“二次函数应用题”教后做如下反思:我的成功之处是:一开始我引导学生回忆二次函数的三种不同形式的解析式,即一般式、顶点式、交点式,并说出它们各自的性质如抛物线的开口方向,对称轴,顶点坐标,最大最小值,函数在对称轴两侧的增减性。然后出示问题,对于这个问题,不少学生表情凝重,目光迷惘,思路不畅,不知从何处下手。我反复引导学生建立平面直角坐标系,分析解决问题的方法。学生从直角坐标系中发现了抛物线上的点,我进一步引导学生找抛物线的顶点坐标,在老师的引导下,学生设出了二次函数的解析式,并将找到的已知点代入,求出了二次函数的解析式。接着我引导学生就同一问题建立不同的直角坐标系,再去找抛物线上的已知点,这是学生找到了已知点,就能判断用哪种解析式,试着求出函数的解析式。接下来,再出示例题,引导学生分析解答。学生从上面的解题过程中得到了启示,学到了解题方法。教学中,我从学生的实际出发,帮助学生解决学习中的困难,启发和引导学生观察二次函数图像,对图像进行分析,得出解决问题的方案。所以教学方法的设计较完美,并且教学重点、难点把握的较准确,同时调动大多数学生学习的积极性和主动性,所以较好的达到教学目标。 不足之处表现在: 1、少数学生对于建立平面直角坐标系有困难。不会根据抛物线正确建立坐标系 2、少数学生不会分析题意,不能正确列式求出二次函数的解析式 3、学生对一些常规知识的缺失突出的暴露出来。如利用三点坐标求二次函数解析式,学生解三元一次方程组感到困难等。 4、少数学生不会将二次函数的一般式配方转化为顶点式;不会利用顶点式求函数的最大值或最小值。 总之,本单元的教学,虽取得了一些成绩。但也暴露出了许多问题。今后在教学中我一定吸取教训,努力改正自己的不足,提高自己的教学上水平。 第5篇:二次函数教学设计 二次函数教学设计 亮兵中学郭立新 一、教材分析 本节课是数学人教版九年级(下)二次函数这一章的第一节课内容。知识方面,它是在正比例函数,一次函数,反比例函数的基础上,对函数认识的完善与提高;也是对方程的理解的补充,同时也是以后学习初等函数的基础。根据本节的教学内容及学生学情,用百度网上搜索下载投篮视频,给学生视觉上的直观感受,同时提出这曲线与二次函数密切相关。教学之前用百度在网上搜索二次函数的相关教学材料,确定课堂教学重难点,重点是理解二次函数的概念,能根据已知条件写出函数解析式;难点是从实例中抽象出二次函数的定义,会分析实例中的二次函数关系。 二、教学目标 知识与技能: 1、理解并掌握二次函数的概念; 2、能根据实际问题中的条件列出二次函数的解析式。 过程与方法: 1、经历探索、分析和建立两个变量之间的二次函数关系的过程,体会二次函数是刻画现实世界的一个有效的数学模型。 2、通过分析实际问题列出二次函数关系式,培养学生分析问题、解决问题的能力。 情感态度价值观: 通过学生的主动参与,师生、学生之间的合作交流,提高学生的学习兴趣,激发他们的求知欲、培养合作意识。 三、教学方法及教学思路: 利用课件,图片,视频等,来引导学生对问题的思考,并逐步掌握解决问题的关键。本课的设计内容分为以下几个部分: 1、提出问题,导入新课; 2、合作交流,形成概念; 3、运用新知,解决问题; 4、巩固练习,深化知识; 5、归纳小结,布置作业。 四、教学过程 (一)、提出问题,导入新课。 1、回忆一下什么是正比例函数、一次函数、反比例函数?它们的一般形 式是怎样的?图象形状各是什么? 教师提出问题:投篮球时篮球运行的路线是什么曲线?这种曲线的形状是怎样的?是否象以前学过的函数图象?能否用新的函数关系式来表示?怎样计算篮球达到最高点时的高度?这将在本章二次函数中学习。 2、你能举出一些生活中类似的曲线吗? (二)、合作交流,形成概念。 1、列式表示下面函数关系。 问题1: 正方体的六个面是全等的正方形,如果正方形 的棱长为x,表面积为y,写出y与x的关系。 问题2: n边形的对角线数d与边数n之间有怎样的关系? 问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量如果每年都比上一年的产量增加x倍,那么两年后这种产品的数量y将随计划所定的x的值而定,y与x之间的关系怎样表示? 活动中教师关注: (1)学生参与小组合作讨论后,能否明白题意,写出相应关系式。 (2)问题3中可先分析一年后的产量,再得出两年后的产量。 2、教师引导学生观察,分析上面三个函数关系式的共同点。 学生小组交流、讨论得出结论,它们的共同点: (1) 等式的左边为函数,等式的右边为自变量的二次式。 (2)等式的右边可统一为“ax2+bx+c”的形式。 3、教师口述二次函数的定义并板书在黑板上:一般地,形如y=ax2+bx+c (a, b,c是常数,a0)的函数,叫二次函数。 a为二次项系数,ax2叫做二次项;b为一次项系数,bx叫做一次项; c为常数项。 4、问题:函数y=ax²+bx+c,当a、b、c满足什么条件时, (1)它是二次函数?(2)它是一次函数? (3)它是正比例函数? 活动中教师应关注: (1)学生能否归纳、概括出这三个函数关系式的共同特点; (2)函数y=ax2+bx+c中,a0是必要条件,切不可忽视而b,c的值可以为任何实数若b,c其一为0或均为0,上述函数的式子可以写成怎样?此时它们还是二次函数吗? (3) 定义是关于x的二次整式(切不可把“y=x2+ +3,当成二次函数) 。 (三)、运用新知,解决问题。 例1 下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项。 (1) y=3(x1)²+1 (2)y=(x+3)²x² (3)s=32t² (4) y=mx²+nx+p (m,n,p为常数) 例2 已知函数 , (1) m取什么值时,此函数是正比例函数? (2) m取什么值时,此函数是反比例函数? (3) m取什么值时,此函数是二次函数? 例3 矩形的长和宽分别是3米和2米,把它的长增加x米,宽增加若干米,使周长成为原来的2倍,设边长增加后,矩形的面积是S,求S与x之间的函数关系式。 (四)、巩固练习,深化知识。 1、一个圆柱的高等于底面半径,写出它的表面积s 与半径 r 之间的关系式。 2、n支球队参加比赛,每两队之间进行一场比赛,写出比赛的场次数 m与球队数 n 之间的关系式。 3、m为何值时,函数 是以x为自变量的二次函数? (五)、归纳小结,布置作业。 1、小结 这节课我们主要学习了二次函数,你有哪些收获?学生回答。 2、布置作业 必做题:教科书 第14页习题261第 1、2题 选做题:教科书 第31页7题。 附板书设计: 1、定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a0)的函数叫做x的二次函数。其中,x是自变量,a,b,c分别是函数表达式的二次项系数、一次项系数和常数项。 2、y=ax²+bx+c(a,b,c是常数,a0)的几种不同表示形式: (1)y=ax²(a0,b=0,c=0,) 。 (2)y=ax²+c(a0,b=0,c0) 。 (3)y=ax²+bx(a0,b0,c=0) 。 五、教学反思 由于本节课是二次函数的第一节课,能吸引学生的注意力,让他们产生学习兴趣,显得尤为重要。 于是先用百度网上搜索下载的投篮视频、喷水池的喷水视频,彩虹、桥梁、战略导弹防御系统示意图等图片这些丰富的生活实例,给学生带来视觉上的直观感受,调动学生的积极性,让他们充分感受到二次函数的应用价值与实际意义。 接着学习求一些实际问题中二次函数的解析式,重视二次函数概念的形成和建构,体验用函数思想去描述、研究变量之间变化规律的意义。在概念的学习过程中,让学生注重a、b、c的含义,为后面例题的学习打下基础。巩固练习中安排了变式练习,注意了教学安排的合理性。最后提供一段教学视频让学生温故知新。 第6篇:二次函数教学设计 二次函数教学设计 一、教材分析: 二次函数选自义务教育课程标准试验教科书(五四学制)数学(人教版)九年级上册第二十一章,这章是在学生学习了一次函数与反比例函数,对于函数已经有所认识,从一次函数和反比例函数的学习大家已经知道学习函数大致包括以下内容:1通过具体的事例认识这种函数;2探索这种函数的图像和性质;3利用这种函数解决实际问题;4探索这种函数与相应方程等的关系。本章“二次函数”的学习也是从以上几个方面展开。首先让学生认识二次函数,掌握二次函数的图像和性质,然后让学生探索二次函数与一元二次方程的关系,从而得出用二次函数的图像求一元二次方程的方法。最后让学生运用二次函数的图像和性质解决一些实际问题。 本章教学时间约需12课时,具体分配如下(仅供参考): 211 二次函数 (6课时) 212用函数的观点看一元二次方程 (1课时) 213实际问题与二次函数 (3课时) 数学活动 小结 (2课时) 211 二次函数教学时间约为 6课时,下面是第一课时的教学设计,此时学生对函数的相关知识已经很陌生,第一课时应对上学段学的一次函数和反比例函数的知识做一个回顾,让学生重温学习函数应该从以下四个内容入手:认识函数;研究图像及其性质;利用函数解决实际问题;函数与相应方程的关系。再通过分析实际问题,以及用关系式表示这一关系的过程,引出二次函数的概念,获得用二次函数表示变量之间关系的体验。然后根据这种体验能够表示简单变量之间的二次函数关系并能利用尝试求值的方法解决实际问题 二、教学目标: 知识技能: 1探索并归纳二次函数的定义; 2能够表示简单变量之间的二次函数关系 数学思考: 1感悟新旧知识间的关系,让学生更深地体会数学中的类比思想方法; 2经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系 解决问题: 1让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系; 2.能够利用尝试求值的方法解决实际问题进一步体会数学与生活的联系,增强用数学意识。 情感态度: 1把数学问题和实际问题相联系,从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲; 2使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用; 3通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程, 培养大家的合作意识 三、教学重点、难点: 教学重点: 1经历探索和表示二次函数关系的过程,获得二次函数的定义。 2能够表示简单变量之间的二次函数关系 教学难点: 经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验 四、教学方法:教师引导自主探究合作交流。 五:教具、学具:教学课件 六、教学媒体:计算机、实物投影。 七、教学过程: 活动1 温故知新,引出课题。 师:对于“函数”这个词我们并不陌生,大家还记得我们学过哪些函数吗? 生:学过正比例函数,一次函数,反比例函数 师:那函数的定义是什么,大家还记得吗? 生:记得,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量 师:能把学过的函数回忆一下吗? 生:可以。 一次函数y=kx+b (其中k、b是常数,且k0) 正比例函数ykx (k是不为0的常数) 反比例函数y=k (k是不为0的常数) x师:学习这些函数的时候,大家还记得我们从哪几个方面探究的吗? 生: 定义、函数的一般形式、函数的图像和性质、函数在实际问题中的应用、函数与方程与不等式的关系等。 师:很好,从上面的几种函数来看,每一种函数都有一般的形式那么二次函数的一般形式究竟是什么呢?本节课我们将揭开它神秘的面纱 师生行为:教师提出问题,指名回答,师生共同回顾旧知,教师做出适当总结和评价。 教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,对于一些概括性较强的问题,教师要进行适当引导。 设计意图:由复习回顾旧知识入手,通过回顾已经学过的函数的相关知识,对要探究的新的函数有个明确的方向,让学生由旧知识中寻找新知识的生长点,符合认识新事物的规律,由浅入深,由表及里,逐渐深化。 活动2创设情境 探究新知: 问题 1正方体六个面是全等的正方形,设正方形棱长为 x ,表面积为 y ,则 y 关于x 的关系式为是什么? 2多边形的对角线数 d 与边数 n 有什么关系? n边形有个顶点,从一个顶点出发,连接与这点不相邻的各顶点,可作条对角线。因此,n边形的对角线总数d =。 3某工厂一种产品现在年产量是20件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示? 这种产品的原产量是20件,一年后的产量是 件,再经过一年后的产量是 件,即两年后的产量为 。 4 问题2中有哪些变量?其中哪些是自变量? 大家根据刚才的分析,判断一下式子中的d是否是n的函数?若是函数,与原来学过的函数相同吗?问题3呢? 5观察上面的三个函数,从解析式看有什么共同点? 师生行为:教师在大屏幕上逐一提出问题,问题 1、 2、3让学生独立思考完成师生共同订正,问题 4、5小组讨论完成,教师做适当的引导,点拨,得出问题结论。 定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a 0)的函数叫做x的二次函数。 教师重点关注:1强调几个注意的问题:(1)等号左边是变量y,右边是关于自变量x的整式。(2)a,b,c为常数,且a0;(3 )等式的右边最高次数为 2 ,可以没有一次项和常数项,但不能没有二次项。(4)x的取值范围是任意实数。 2学生在探究问题的过程中,能否优化思维过程,使解决问题的方法更准确。 设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,通过问题的解决,为得出二次函数的定义做好铺垫,并让学生感受到身边的数学,激发学生学习数学的好奇心和求知欲。学生通过分析、交流,探求二次函数的概念,加深对概念的理解,为解决问题打下基础。 活动3 例题学习 内化新知 问题 例1,下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项. (1) y=3(x-1)²+1 (2) y=x+k x (3) s=3-2t² (4) y=(x+3)²-x² (5)y= -x (6) v=10 r² m例2,函数 y = ( + 3) xm2-(1)m取什么值时,此函数是正比例函数? (2) m取什么值时,此函数是反比例函数? (3) m取什么值时,此函数是二次函数? 师生行为:教师出示例1,同学们稍加考虑即可获得问题的结论,进而引出例2,例2让学生分组展开讨论,待学生充分交流后,教师再组织各小组展示自己的讨论结果,共同得到正确是结论,并获得解题的经验。 教师重点关注:(1)探究中各小组是否积极展开活动;(2)学生对二次函数概念是