高中数学说课稿:《正弦定理》优秀说课稿范例.doc
优质文本高中数学说课稿:?正弦定理?优秀说课稿范例正弦定理的说课稿大家好,今天我向大家说课的题目是?正弦定理?。下面我将从以下几个方面介绍我这堂课的教学设计。一 教材分析本节知识是必修五第一章?解三角形?的第一节内容,与初中学习的三角形的边和角的根本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。情感目标:面向全体学生,创造平等的教学气氛,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。教学重点:正弦定理的内容,正弦定理的证明及根本应用。教学难点:正弦定理的探索及证明,两边和其中一边的对角解三角形时判断解的个数。二 教法根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的开展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现为根本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点三 学法:指导学生掌握“观察猜想证明应用这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,表达学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。四 教学过程第一:创设情景,大概用2分钟第二:实践探究,形成概念,大约用25分钟第三:应用概念,拓展反思,大约用13分钟一创设情境,布疑激趣“兴趣是最好的老师,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的局部,A=47°,B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。二探寻特例,提出猜想1激发学生思维,从自身熟悉的特例直角三角形入手进行研究,发现正弦定理。2那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。3让学生总结实验结果,得出猜想:在三角形中,角与所对的边满足关系这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。三逻辑推理,证明猜想1强调将猜想转化为定理,需要严格的理论证明。2鼓励学生通过作高转化为熟悉的直角三角形进行证明。3提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,表达了数形结合的数学思想。4思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明四归纳总结,简单应用1让学生用文字表达正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。2正弦定理的内容,讨论可以解决哪几类有关三角形的问题。3运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。五讲解例题,稳固定理1例1。在ABC中,A=32°,B=81.8°,a=42.9cm.解三角形.例1简单,结果为唯一解,如果三角形两角两角所夹的边,以及两角和其中一角的对边,都可利用正弦定理来解三角形。2 例2. 在ABC中,a=20cm,b=28cm,A=40°,解三角形.例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。六课堂练习,提高稳固1.在ABC中,以下条件,解三角形.(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm2. 在ABC中,以下条件,解三角形.(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°学生板演,老师巡视,及时发现问题,并解答。七小结反思,提高认识通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?1用向量证明了正弦定理,表达了数形结合的数学思想。2它表述了三角形的边与对角的正弦值的关系。3定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。八任务后延,自主探究如果一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。五 板书设计我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就锋利地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!寻根究底,其主要原因就是腹中无物。特别是写议论文,初中水平以上的学生都知道议论文的“三要素是论点、论据、论证,也通晓议论文的根本结构:提出问题分析问题解决问题,但真正动起笔来就犯难了。知道“是这样,就是讲不出“为什么。根本原因还是无“米下“锅。于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背的重要性,让学生积累足够的“米。要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,上下起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又开展了思维,为说打下了根底。语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费力,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的为难局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见,如果有目的、有方案地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和开展。板书设计可以让学生一目了然本节课所学的知识,证明正弦定理的方法以及正弦定理可以解决的两类问题。