电离辐射剂量与防护.doc
电离辐射剂量学:研究电离辐射能量在物质中的转移和沉积的规律,特别是转移和沉积的度量(量的定义、测量、计算等)的科学。剂量计算或测量两种基本途径: (1)辐射场本身测量辐射场粒子数、辐射的能谱分布、辐射能量沉积本领 (2)直接或间接测量沉积能量第一章回顾1、辐射的分类i.电离辐射:通过初级和次级过程引起物质电离,如粒子、粒子、质子、中子、X射线和 射线等。ii.非电离辐射:与物质作用不产生电离的辐射,如微波、无线电波、红外线等。2、辐射场的描述n 粒子注量定义:n 单向辐射场:粒子注量f,数值上等于通过与粒子入射方向垂直的单位面积的粒子数。dada按能谱分布:能量注量:能量注量与粒子注量的关系3、相互作用系数A、带电粒子(e、a、重带电粒子)总阻止本领:总线阻止本领带电粒子通过物质时在单位路程上损失的能量。 dE是dl距离上损失能量的数学期望值。总线阻止本领与带电粒子的性质(电荷、质量、能量)和物质的性质(原子序数、密度)有关。去除物质密度的影响可得到总质量阻止本领公式:总质量阻止本领描述带电粒子在物质中穿过单位路程时,因各种相互作用而损失的能量。它可分解为各种相互作用阻止本领之和。质量碰撞阻止本领(包括电离和激发对能量损失的贡献)质量辐射阻止本领(由非弹性辐射相互作用导致的初级带电粒子的能量损失决定) 笔形束辐射在水模中的纵向能量沉积X、 g射线与物质作用类型: 光电效应 康普顿效应电子对生成中子与物质相互作用类型: n 弹性散射(Elastic-scattering):总动能守恒。n 非弹性散射(In-elastic scattering):总能量、动量守恒,动能不守恒。n 去弹性散射(Non-elastic scattering):(n.p)(n.a)等。n 俘获(Capture):(n.)。n 散射(Spallation)以上均属与原子核的相互作用。B、不带电粒子(X 、g、中子)n 质量减弱系数(m/r):描述物质中入射不带电粒子数目的减小,不涉及具体物理过程。n 质量能量转移系数(mtr/r):描述不带电粒子穿过物质时,其能量转移给带电粒子数值。只涉及带电粒子获得的能量,而不涉及这些能量是否被物质吸收。n 质量能量吸收系数(men/r):描述不带电粒子穿过物质时,不带电粒子被物质吸收的能量。n 当次级带电粒子动能较小、物质原子序数较低时,轫致辐射弱,g值接近于零,此时men/r 值近似mtr/r值。n 数值上:质量减弱系数(m/r)>质量能量转移系数(mtr/r)>质量能量吸收系数(men/r)4、辐射剂量学中使用的量A 吸收剂量(D) n 同授与能(e)相联系,单位质量受照物质中所吸收的平均辐射能量。nn 单位Gy。适用于任何类型的辐射和受照物质,与一个无限小体积相联系的辐射量。受照物质中每一点都有特定的吸收剂量数值。 B、比释动能(K) 同转移能(etr)相联系,不带电粒子在质量dm的物质中释放出的全部带电粒子的初始动能总和的平均值。单位Gy。针对不带电粒子,对受照物质整体,而不对受照物质的某点而言。实用时可先查比释动能因子表(国际上给出比释动能因子的推荐值),进而求得比释动能。 C 带电粒子平衡 不带电粒子在某一体积元的物质中,转移给带电粒子的平均能量,等于该体积元物质所吸收的平均能量。发生在物质层的厚度大于次级带电粒子在其中的最大射程深度处。 吸收剂量与比释动能的关系带电粒子平衡下 D=K(1-g) g是次级电子在慢化过程中,能量损失于轫致辐射的能量份额。 对低能X或g射线,可忽略轫致辐射能量损失,此时 DK C、照射量(X) X或g射线在单位质量的空气中,释放出来的全部电子完全被空气阻止时,在空气中产生一种符号的离子的总电荷的绝对值。单位C/kg。针对X或g射线、空气。空气中各点的照射量不同。空气中某点的照射量X与同一点处的能量注量Y的关系:若粒子为单能的,则照射量与粒子注量有如下关系:第二章回顾1、照射量的标准测量方法A 自由空气电离室 适用于测量50keV3MeV的X或g射线,基本原理根据照射量定义。比释动能B 空腔电离室 测量较高能量的X或g射线的照射量,特点增加电离室的壁厚。测量依据布拉格戈瑞原理。条件:介质内存在的空腔足够小以致i腔内的气体电离几乎全部是介质中的次级电子引起的;ii空腔的存在不会改变介质中初始光子和次级光子的能谱和角分布;iii空腔周围介质厚度大于次级电子在其中的最大射程。空腔位置处存在着电子平衡Sm,g物质与腔内气体的平均质量碰撞阻止本领比2、中子当量剂量的测量n 中子当量不同中子能量范围的中子吸收剂量乘以相应的辐射权重因子,最后相加,即得中子当量剂量。n 实际测量中,测量不同中子能量范围的中子吸收剂量是困难的。这时在一定能量范围内,调整仪器的响应,使仪器的探测效率 正比于 。这样,辐射场中探测器测到的中子数Nn,即正比于中子的当量剂量指数HI,no。 第三章回顾第一节 辐射对人体健康的影响一、影响辐射生物学作用的因素1、物理因素与辐射有关的因素n 辐射类型n 剂量率及分次照射n 照射部位和面积n 照射的几何条件2、生物因素与机体有关n 不同生物种系的辐射敏感性n 个体不同发育阶段的辐射敏感性n 不同细胞n 组织或器官的辐射敏感性 辐射防护即从影响辐射损伤的因素入手来进行防护,如对不同的辐射类型采取不同的防护方法、限制剂量和分次照射以使辐射损伤所发生的可能性最小。 二、剂量与效应的关系随机性效应(Stochastic effect)n 随机性效应特征“线性无阈”。“无阈”指任何微小的剂量都可能诱发随机性效应。“线性”指随机性效应发生几率与所受剂量成线性关系, 但其后果的严重程度不一定 与所受剂量有关系。n 确定性效应有阈值。超过阈值,效应肯定会发生,且其严重程度与所受剂量大小有关,剂量越大,效应越明显。 ICRP在其建议书草案(征求意见稿,2006)中将确定性效应也称为组织反应。第二节 辐射防护中使用的量一、与个体相关的辐射量1、当量剂量(H):与辐射生物效应相联系,用同一尺度描述不同类型和能量的辐射对人体造成的生物效应的严重程度或发生几率的大小。n WR辐射权重因子与辐射种类和能量有关;n DT,R按组织或器官T平均计算的来自辐射R的吸收剂量;n HT单位Sv。 WR值大致与辐射品质因子Q值一致。所谓辐射品质,是指电离辐射授予物质能量在微观空间分布上的特征,传能线密度L是描述加射品质的方法之一。2、有效剂量(E):与人体各器官对辐射的敏感度相联系。描述辐射照射人体,给受到照射的有关器官和组织带来的总的危险。在非均匀照射下随机效应发生率与均匀照射下发生率相同时所对应的全身均匀照射的当量剂量。有效剂量单位Sv。 WT组织权重因子,在全身均匀受照射下各器官对总危害的相对贡献。组织权重因子(WT)器官或组织受照射所产生的危害与全身均匀受照射时所产生的总危害的比值。即反映了在全身均匀受照射下各器官对总危害的相对贡献。 有效剂量表示为表示了非均匀照射条件下随机效应发生率与均匀照射下发生率相同时所对应的全身均匀照射的当量剂量。n 评价危险时,当量剂量、有效剂量,只能在远低于确定性效应阈值的吸收剂量下提供随机性效应概率的依据。 3、待积当量剂量H50,T、待积有效剂量H50,E描述内照射情况下,放射性核素进入人体内对某一器官或个人在一段时间内(50y)产生的危害。也可用来估计摄入放射性核素后将发生随机性概效应的平均几率。 第三节 人体受到照射的辐射来源及其水平1、天然本底照射n 宇宙射线 来自宇宙空间的高能粒子流,包括质子、a粒子、其它重粒子、中子、电子、光子、介子等;n 宇生核素 宇宙射线与大气中的原子核相互作用产生,如3H、14C、7Be等;n 原生核素 存在于地壳中天然放射性核素,以238U、232Th、235U为起始的三个天然放射系,及独立的长寿命放射性核素如40K等。2、人工辐射n 医疗照射 X射线检查n 核动力生产 核燃料循环n 核爆炸第四节 辐射防护的基本原则辐射防护的目的 防止有害的确定性效应,并限制随机性效应的发生率,使它们达到被认为可以接受的不平。n 辐射实践正当化 涉及照射的实践,除非对受照个人或社会能够带来足以补偿其所产生的辐射危害的利益,否则不得采用。n 防护与安全的最优化 对一项实践中的任一特定辐射源,个人剂量的大小、受照人数以及照射发生的可能性,在考虑了经济和社会因素之后,应当全部保持在合理可行的最低程度(ALARA As Low As Reasonably Achievable)。为了保证公平性,应当在这个过程中考虑个人剂量约束或个人危险约束。 最优化的定量分析技术代价利益分析Cost Benefit Analysisn 剂量限制 个人剂量限值 个人受到所有有关实践联合产生的照射,应当遵守剂量限值。 剂量约束值 一种与源相关的个人剂量值,公众成员从任何受控源的计划运行中接受的年剂量上界。干预的防护体系ICRP60干预:任何旨在减小或避免不属于受控实践的或 因事故而失控的源所致照射或照射可能性的行动.第四章回顾第一节 外照射防护的一般方法1.1、外照射防护的基本原则 尽量减少或避免射线从外部对人体的照射,使之所受照射不超过国家规定的剂量限值。内、外照射的特点照射方式辐射源类型危害方式常见致电离粒子照射特点内照射外照射多见开放源多见封闭源电离、化学毒性电离a、b高能b、电子、g、X、n持续间断1.2、外照射防护的基本方法1、减少接触放射源的时间2、增大与放射源的距离3、设置屏蔽1.3、屏蔽材料的选择a 一般选低Z材料 纸、铝箔、有机玻璃b 低Z+高Z材料 铝、有机玻璃、混凝土、铅X、g 高Z材料、通用建筑材料 铅、铁、钨,铀N 高Z材料、含氢低Z材料 、含硼材料 水、石蜡、碳化硼铝、含硼聚乙烯第二节 g射线的剂量计算2.1 g点源的照射量率计算n 点源:辐射场中某点与辐射源的距离,比辐射源本身的几何尺寸大5倍以上,即可把辐射源看成是点状的,称其为点状源,简称点源。n 非点源:辐射场中某点与辐射源的距离,比辐射源本身的几何尺寸小于5倍,且辐射源有一定的大小和形状,因而该辐射源不能视为简单的点源。 第三节 X、g射线在物质中的减弱规律3.1 窄束X或g射线的减弱规律 窄束 入射光子发生一次相互作用,就认为该光子消失 宏观衰减量质量能量减弱系数、质量厚度 物质对光子数目衰减第四节 g射线的屏蔽计算n g点源屏蔽计算n 点源,初级辐射占主导时:nn 透射比:减弱倍数求得K后,可查P199起附表613一定能量和屏蔽物下减弱K倍的对屏蔽物厚度n 例7、强辐射场所用的g辐射源,通常都是在水井中进行倒源工作。强辐射源的运输容器高度为1m,从容器中提出源时,源可高出容器口不超过0.5m。现倒装60Co辐射源的活度为1.85×1015Bq,问需要多深的水井,才能使水井表面的当量剂量率低于3mSvh-1。 曲线A根据P109页附表6各向同性点源射线减弱K倍所需的水屏蔽层厚度作出,曲线B根据作出。A、B两曲线交点相应的水深约为33m,再加上操作源所需的厚度1.5m,因而水井总需深度为34.5m。第五节 射线外照射防护射线特点:能谱连续,在物质中的减弱近似指数规律 散射显著; 轫致辐射;点源的剂量分布与距离平方成反比,但有很多修正项。点源对空气吸收剂量率近似:射线的射程例10、设计为存放活度为3.7×1012Bq的32P点状源的溶器。选定用有机玻璃作内层屏蔽层,铅作外屏蔽层。计算所需的有机玻璃和铅各为多厚?假设离辐射源1m的当量剂量率控制水平为7.5mSvh-1。若内外层材料颠倒过来,则又将怎么样?由P105页表4.9某些放射性核素射线的最大能量和平均能量可知,32P的射线最大电子能量为1.711(100%)由P109页表4.10查得有机玻璃的密度为1.18gcm-3,由此得有机玻璃厚度 n 由P184页附表1可查得,与轫致辐射光子平均能量Eb为0.695MeV相应的空气质量能量吸收系数为2.918×10-3m2kg-1。用(4.66)式可算得空气中的吸收剂量率为: n 射线的辐射权重因子为1,故n 相应的减弱倍数为:n 查P202页附表,可得铅的屏蔽厚度为5.86cm。 第六节 中子外照射的防护1中子源特点总结:n 放射性中子源 优点:各向同性、源的总体尺寸小(可视为点源)缺点:中子产额低(400 中子/(106 s Bq), 中子场常伴随有g辐射n 加速器中子源优点:产额高(1091010中子/(s mA) , (p,n)源伴随g辐射少缺点:中子产额角分布严重,各角度中子分布不均 中子源体积较大2 当量剂量计算单能中子场(4.73)具有能量分布的中子场(4.74)与中子谱fn,E相应的中子平均当量剂量换算因子(4.75)3、中子在屏蔽层中的减弱中子在物质中衰减规律总结:n 非弱性散射:有阈值,中子能量在25MeV以下,非弹性散射截面随中子能量增大而增加。n 弹性散射:与中子相碰撞的原子核越轻,中子转移给反冲核能量越多。氢是1MeV左右的中子最好的慢化剂。n 要使快中子(0.510MeV)慢化,首先应使用重或较重的物质,通过非弹性散射使中子能量很快降低到与原子核的第一激发能级相应的能量以下;以后再利用含氢物质,能过弹性散射使中子能量进一步降低到热能区。n 硼的热中子慢化截面大,且其伴随的g辐射能量低,因而适宜做热中子慢化剂。反应堆中常用其吸收热中子,调节临界系数。计算宽束流中子减弱的分出截面法 经历散射作用的中子被有效地从穿出屏蔽的中子束中“分出”了,使穿过屏蔽层的都是哪些在屏蔽层内未经相互作用的中子。满足下列条件可用分出截面法:A、屏蔽层足够厚,使得在屏蔽层后面的当量剂量主要是由中子束中一组贯穿能力最强的中子的贡献所致;B、屏蔽层内须含有铁、铅之类的中等重或重的材料,以使入射中子能量能通过非弹性散射很快降低到1MeV左右;C、屏蔽层内要含有足够的氢,以保证在很短的距离内,使中子能量从1MeV左右很快降到热能区,并使其能在屏蔽层内被吸收。为使参考点上中子注量率降低到 jL(m-2s-1),所需屏蔽厚度d,可由下式计算:14、已知226Ra-Be中子源的活度为3.7×1012Bq(中子产额见表4.12)。求离源2m处的中子与g当量剂量率。 中子当量剂量率:从P112页表4.12查得226Ra-Be中子源的中子产额为405×10-6s-1Bq-1,查P117页表4.15得226Ra-Be中子源的当量剂量换算因子为34.5×1015Svm-2。 n g当量剂量率:n 查P82页表4.4得核素226Ra的空气比释动能常为6.13×10-17C m-2kg-1Bq-1s-1。n P128 例1 中子屏蔽计算的例子第五章 内照射防护、监测与评价第一节 前言内照射: 体内放射性核素产生的照射。特点: 开放源 化学毒性、电离( 、) 持续照射,直至核素衰变完或排出体外影响因素: 放射性核素的半衰期、辐射类型和能量 进入人体的数量、理化状态、蓄积的部位和滞留时间描述: 待积有效剂量(本章第五节)评价方法: 利用ICRP78号出版物及其他资料提供的图表,可以方便地由生物分析数据和全身测量结果求得摄入量,进而计算出待积有效剂量。内照射防护基本原则 内照射防护的基本原则是制定各种规章制度,采取各种有效措施,阻断放射性物质进入人体的各种途径,在最优化原则的范围内,使摄入量减少到尽可能低的水平。重点第一章一、名词解释 n 电离辐射n 粒子注量n 粒子注量率n 比释动能n 吸收剂量二、简答题什么叫带电粒子平衡?三、简述题比释动能、吸收剂量和照射量间的区别与联系四、计算题1.4、在辐射场中,某点处放置一个圆柱形电离室,其直径为0.03m长为0.1m。在射线照射下产生10-6C的电离电荷。试求在该考察点处的照射量和同一点处空气的吸收剂量各为多少?第二章1、B-G腔需满足哪些条件? 2、什么样的剂量计不需刻度? 第三章n 1、确定性效应、随机性效应n 2、当量剂量、有效剂量n 3、待积当量剂量n 4、辐射防护三原则第五章1、内照射与外照射的不同之处?2、内辐射防护的基本措施为( 包容 )、( 隔离 )、( 稀释 )和( 净化 )。3、内照射防护基本原则?