一年级数学下册期末考试试卷 [高一年级数学期末考试知识点] .docx
-
资源ID:61691928
资源大小:13.07KB
全文页数:5页
- 资源格式: DOCX
下载积分:9.9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
一年级数学下册期末考试试卷 [高一年级数学期末考试知识点] .docx
一年级数学下册期末考试试卷 高一年级数学期末考试知识点 高一网权威发布高一年级数学期末考试学问点,更多高一年级数学期末考试学问点相关信息请访问高一网。学习是一个坚持不懈的过程,走走停停便难有成就。比如烧开水,在烧到80度是停下来,等水冷了又烧,没烧开又停,如此周而复始,又费精力又费电,很难喝到水。学习也是一样,学任何一门功课,都不能只有三分钟热度,而要一鼓作气,每天坚持,久而久之,不论是状元还是伊人,都会向你招手。大范文网高一频道为正在努力学习的你整理了高一年级数学期末考试学问点,希望对你有帮助!两个平面的位置关系:(1)两个平面相互平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行没有公共点;两个平面相交有一条公共直线。a、平行两个平面平行的判定定理:假如一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。两个平面平行的性质定理:假如两个平行平面同时和第三个平面相交,那么交线平行。b、相交二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。(2)二面角:从一条直线动身的两个半平面所组成的图形叫做二面角。二面角的取值范围为0°,180°(3)二面角的棱:这一条直线叫做二面角的棱。(4)二面角的面:这两个半平面叫做二面角的面。(5)二面角的平面角:以二面角的棱上随意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。(6)直二面角:平面角是直角的二面角叫做直二面角。两平面垂直两平面垂直的定义:两平面相交,假如所成的角是直二面角,就说这两个平面相互垂直。记为两平面垂直的判定定理:假如一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直两个平面垂直的性质定理:假如两个平面相互垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。二面角求法:干脆法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(留意求出的角与所须要求的角之间的等补关系)棱锥棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。棱锥的性质:(1)侧棱交于一点。侧面都是三角形(2)平行于底面的截面与底面是相像的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方正棱锥正棱锥的定义:假如一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。正棱锥的性质:(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。(3)多个特别的直角三角形a、相邻两侧棱相互垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。b、四面体中有三对异面直线,若有两对相互垂直,则可得第三对也相互垂直。且顶点在底面的射影为底面三角形的垂心。集合集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急。2、数学名词。一组具有某种共同性质的数学元素:有理数的。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,特地探讨集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的全部领域。集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。集合集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。集合与集合之间的关系某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。(说明一下:假如集合A的全部元素同时都是集合B的元素,则A称作是B的子集,写作A⊂B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A⊂B。中学教材课本里将⊂符号下加了一个符号,不要混淆,考试时还是要以课本为准。全部男人的集合是全部人的集合的真子集。)