2.4.2直线与圆锥曲线的综合问题课时计划--高二上学期数学北师大版(2019)选择性必修第一册.docx
课时计划课题2.4.2直线与圆锥曲线的综合问题 教学目标 了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和 实际问题。 通过圆锥曲线的学习,进一步体会数形结合的思想。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步感受数形结合的基本思想。教材分析重点直线与圆锥曲线的位置关系掌握弦长公式,会求解与弦长有关的问题难点掌握弦长公式,会求解与弦长有关的问题教具多媒体、PPT、投影仪教学过程知识讲解;一、弦长公式问题已知直线l:ykxm上两点A(x1,y1),B(x2,y2),线段AB的长度如何表示?提示|AB|x1x2| .知识梳理当直线的斜率存在时,斜率为k的直线l与椭圆相交于A(x1,y1),B(x2,y2)两个不同的点,则弦长公式的常见形式有如下几种:(1)|AB|x1x2|;(2)|AB|y1y2|(k0);(3)|AB|;(4)|AB|.注意点:(1)一定先有判别式大于零,才有两根之和、两根之积(2)对于斜率不确定的问题,要分类讨论(3)抛物线y22px(p>0)的焦点的弦AB,弦长|AB|x1x2p.例1已知斜率为1的直线l过椭圆y21的右焦点F,交椭圆于A,B两点,求|AB|.解设A(x1,y1),B(x2,y2),由椭圆方程可知,右焦点F(,0),因为直线斜率为1,所以可设直线l的方程为yxm.因为直线过点F(,0),所以0m,所以m,则l:yx,联立消去y整理得,5x28x80,所以x1x2,x1x2.所以|AB|··.反思感悟求弦长的两种方法(1)求出弦两端点的坐标,然后利用两点间的距离公式求解;(2)结合根与系数的关系,利用弦长公式l或l求解二、由弦长求参数值例2已知动点P与平面上两定点A(,0),B(,0)连线的斜率的积为定值.(1)试求动点P的轨迹方程C;(2)设直线l:ykx1与(1)中曲线C交于M,N两点,当|MN|时,求直线l的方程解(1)设动点P的坐标是(x,y),由题意得kPA·kPB.·,化简整理得y21.故点P的轨迹方程C是y21(x±)(2)设直线l与曲线C的交点为M(x1,y1),N(x2,y2),由得(12k2)x24kx0.16k2>0,x1x2,x1x20.|MN|·,整理得k4k220,解得k21,或k22(舍去)经检验k±1符合题意,直线l的方程是y±x1,即xy10或xy10.反思感悟已知弦长求参数,关键是利用弦长公式,得到关于参数的方程,注意求得结果要验证是否满足判别式大于0,否则需舍去三、弦长的最值问题例3在平面直角坐标系xOy中,椭圆C:1(a>b>0)的离心率e,且点P(2,1)在椭圆C上(1)求椭圆C的方程;(2)斜率为1的直线与椭圆C相交于A,B两点,求|AB|的最大值解(1)由题意得椭圆C的方程为1.(2)设直线AB的方程为yxm,联立得3x24mx2m260,设A(x1,y1),B(x2,y2),|AB|x1x2|,当m0时,满足>0,|AB|max4.反思感悟求与椭圆有关的最值、范围问题的方法(1)定义法:利用定义转化为几何问题处理(2)数形结合法:利用数与形的结合,挖掘几何特征,进而求解(3)函数法:探求函数模型,转化为函数的最值问题,借助函数的单调性、基本不等式等求解,注意椭圆的范围课堂练习基础练习1.已知点A(0,2),抛物线C:y2=2px(p>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|MN|=55,则p的值等于A.18B.14C.2D.42.已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是A.25-1B.25-2C.17-1D.17-2综合应用3.直线l经过点(4,2),且与抛物线C:y24x交于P,Q两点,若P与Q的纵坐标之和为4,则直线l的方程为()Axy20 Bx2y60Cxy20 Dx2y04.设A是单位圆x2+y2=1上的任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足|DM|=m|DA|(m>0,且m1).当点A在圆上运动时,记点M的轨迹为曲线C.(1)求曲线C的方程,判断曲线C为何种圆锥曲线,并求其焦点坐标;(2)过原点且斜率为k的直线交曲线C于P,Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H.是否存在m,使得对任意的k>0,都有PQPH?若存在,求m的值;若不存在,请说明理由.5.如图,已知抛物线C:x2=4y的焦点为F,过点F作直线l交抛物线C于A、B两点;椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且椭圆的离心率e=32.(1)求椭圆E的方程;(2)经过A、B两点分别作抛物线C的切线l1、l2,l1与l2相交于点M.证明:ABMF;(3) 椭圆E上是否存在一点M',经过点M'作抛物线C的两条切线M'A'、M'B'(A'、B'为切点),使得直线A'B'过点F?若存在,求出切线M'A'、M'B'的方程;若不存在,请说明理由.6如图,曲线C1是以原点O为中心,F1 ,F2为焦点的椭圆的一部分.曲线C2是以O为顶点,F2为焦点的抛物线的一部分,A是曲线C1和C2的交点且AF2F1为钝角,若|AF1|=72,|AF2|=52.(1)求曲线C1和C2的方程;(2)设点C是C2上一点,若|CF1|=2|CF2|,求CF1F2的面积.答案1.C 2.C3.C4.(2)如图1,设M(x,y),A(x0,y0),则由|DM|=m|DA|(m>0,且m1),可得x=x0,|y|=m|y0|,所以x0=x,|y0|=1m|y|.因为A点在单位圆上运动,所以x02+y02=1.将式代入式即得所求曲线C的方程为x2+y2m2=1(m>0,且m1).因为m(0,1)(1,+),所以当0<m<1时,曲线C是焦点在x轴上的椭圆,两焦点坐标分别为(-1-m2,0),(1-m2,0);当m>1时,曲线C是焦点在y轴上的椭圆,两焦点坐标分别为(0,-m2-1),(0,m2-1).(2)解法一如图2,3,k>0,设P(x1,kx1),H(x2,y2),则Q(-x1,-kx1),N(0,kx1),直线QN的方程为y=2kx+kx1,将其代入椭圆C的方程并整理可得(m2+4k2)x2+4k2x1x+k2x12-m2=0.依题意可知此方程的两根为-x1,x2,于是由根与系数的关系可得-x1+x2=-4k2x1m2+4k2,即x2=m2x1m2+4k2.因为点H在直线QN上,所以y2-kx1=2kx2=2km2x1m2+4k2,于是PQ=(-2x1,-2kx1),PH=(x2-x1,y2-kx1)=(-4k2x1m2+4k2,2km2x1m2+4k2).而PQPH等价于PQ·PH=4(2-m2)k2x12m2+4k2=0,即2-m2=0,又m>0,得m=2,故存在m=2,使得在其对应的椭圆x2+y22=1上,对任意的k>0,都有PQPH.解法二如图2,3,x1(0,1),设P(x1,y1),H(x2,y2),则Q(-x1,-y1),N(0,y1).因为P,H两点在椭圆C上,所以m2x12+y12=m2,m2x22+y22=m2,两式相减可得m2(x12x22)+(y12y22)=0.依题意,由点P在第一象限可知,点H也在第一象限,且P,H不重合,故(x1-x2)(x1+x2)0,于是由式可得(y1-y2)(y1+y2)(x1-x2)(x1+x2)=-m2.又Q,N,H三点共线,所以kQN=kQH,即2y1x1=y1+y2x1+x2.于是由式可得kPQ·kPH=y1x1·y1-y2x1-x2=12·(y1-y2)(y1+y2)(x1-x2)(x1+x2)=-m22.而PQPH等价于kPQ·kPH=-1,即-m22=-1,又m>0,得m=2,故存在m=2,使得在其对应的椭圆x2+y22=1上,对任意的k>0,都有PQPH.5.解:(1)设椭圆E的方程为x2a2+y2b2=1(a>b>0),半焦距为c.由已知条件,得F(0,1),b=1ca=32a2=b2+c2,解得a=2,b=1.椭圆E的方程为x24+y2=1.(2)显然直线l的斜率存在,否则直线l与抛物线C只有一个交点,不合题意,故可设直线l的方程为y=kx+1,A(x1,y1)、B(x2,y2)(x1x2),由y=kx+1x2=4y,消去y并整理得x2-4kx-4=0, x1x2=-4.抛物线C的方程为y=14x2,求导得y'=12x,过抛物线C上A、B两点的切线方程分别是y-y1=12x1(x-x1),y-y2=12x2(x-x2),即y=12x1x-14x12,y=12x2x-14x22,由联立可解得两条切线l1、l2的交点M的坐标为(x1+x22,x1x24),即M(x1+x22,-1),又点F(0,1),FM=(x1+x22,-2),FM·AB=(x1+x22,-2)·(x2-x1,y2-y1)=12(x22-x12)-2(14x22-14x12)=0.ABMF.(3)假设存在点M'满足题意,由(2)知点M'必在直线y=-1上,又直线y=-1与椭圆E有唯一交点,故M'的坐标为M'(0,-1),设过点M'且与抛物线C相切的切线方程为y-y0=12x0(x-x0),其中点(x0,y0)为切点.令x=0,y=-1得,-1-14x02=12x0(0-x0), 解得x0=2或x0=-2,故不妨取A'(-2,1)、B'(2,1),即直线A'B'过点F.综上所述,椭圆E上存在一点M'(0,-1),经过点M'作抛物线C的两条切线M'A'、M'B'(A'、B'为切点),能使直线A'B'过点F. 此时,两切线的方程分别为y=-x-1和y=x-1.6.(1)设椭圆方程为x2a2+y2b2=1(A>b>0),则2A=|AF1|+|AF2|=72+52=6,得A=3.设A(x,y),F1(-C,0),F2(C,0),则(x+C)2+y2=(72)2,(x-C)2+y2=(52)2,两式相减得xC=32.由抛物线的定义可知|AF2|=x+C=52,则C=1,x=32或x=1,C=32.又AF2F1为钝角,则x=1,C=32不合题意,舍去.当C=1时,b=22,所以曲线C1的方程为x29+y28=1(-3x32),曲线C2的方程为y2=4x(0x32).(2)过点F1作直线l垂直于x轴,过点C作CC1l于点C1,依题意知|CC1|=|CF2|.在RtCC1F1中,|CF1|=2|CF2|=2|CC1|,所以C1CF1=45°,所以CF1F2=C1CF1=45°.在CF1F2中,设|CF2|=r,则|CF1|=2r,|F1F2|=2.由余弦定理得22+(2r)2-2×2×2rCOs 45°=r2,解得r=2,所以CF1F2的面积SCF1F2=12|F1F2|·|CF1|sin 45°=12×2×22sin 45°=2.拓展延伸如图,哈尔滨市有相交于点O的一条东西走向的公路l与一条南北走向的公路m,有一商城A的部分边界是椭圆的四分之一,这两条公路为椭圆的对称轴,椭圆的长半轴长为2,短半轴长为1(单位:千米)根据市民建议,欲新建一条公路PQ,点P,Q分别在公路l,m上,且要求PQ与椭圆形商城A相切,当公路PQ长最短时,OQ的长为_千米答案作业设计课后反思课本习题第81页,A组1-4B组1-81. 加强练习2. 总结计算技巧板书设计学科网(北京)股份有限公司