欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    1.4.2正弦函数、余弦函数的奇偶性、单调性和最值 教案.doc

    • 资源ID:61850977       资源大小:272KB        全文页数:5页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    1.4.2正弦函数、余弦函数的奇偶性、单调性和最值 教案.doc

    2011-12-3正弦函数、余弦函数的奇偶性、单调性和最值 教案教学目的1能准确迅速绘出正弦曲线和余弦曲线,并会利用图象研究函数的有关性质2掌握ysin x与ycos x的周期、最值、单调性、奇偶性等性质,并能解决相关问题教学重点:通过正、余弦函数的图象理解正、余弦函数的性质,培养数形结合能力。教学难点:正、余弦函数性质的掌握并灵活应用教学过程:一通过定义证明正余弦函数的奇偶性。正弦函数是,余弦函数是。正弦曲线关于 对称,余弦曲线关于 对称二对称性对称轴 对称中心是 对称轴 对称中心是 三单调性正弦函数在每一个闭区间 上都是增函数,在每一个闭区间 上都是减函数,余弦函数在每一个闭区间 上都是增函数;在每一个闭区间上都是减函数.定义域:正弦函数、余弦函数的定义域都是实数集R或(,),值域与最值正弦函数、余弦函数的值域都是其中正弦函数y=sinx,xR当且仅当x 时,取得最大值当且仅当x 时,取得最小值而余弦函数ycosx,xR当且仅当x ,kZ时,取得最大值当且仅当x,kZ时,取得最小值 例1 求使以下函数取得最大值的自变量x的集合,并说出最大值、最小值分别是什么(1)ycosx1,xR;(2)ysin2x,xR例利用三角函数的单调性,比拟以下各组数的大小。例求函数y=sin(x+),x,的单调增区间。练习求以下函数的最大值和最小值。;当 ?x?时,的最大和最小值。正弦函数、余弦函数的性质:函数ysin xycos x图象定义域值域奇偶性周期性最小正周期:_最小正周期:_单调性在_上单调递增;在_上单调递减在_上单调递增;在_上单调递减最值在_时,ymax1;在_时,ymin1在_时, ymax1;在_ _时,ymin1增区间是 减区间是 增区间是 增区间是 对以下说法正确的选项是 ,那么必是的整数倍 可以改写成关于对称 关于对称4sin >sin ,那么与的大小关系是_ 5假设函数y=sin(x+)(0?x?)是上的偶函数,那么等于函数的最大值最小值比拟sin250与sin260, 的大小 根据正余弦函数的图象,写出使以下不等式成立的的取值集合。1判断函数的奇偶性应坚持“定义域优先原那么,即先求定义域,看它是否关于原点对称2比拟三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比拟,再利用单调性作出判断3求三角函数值域或最值的常用求法将y表示成以sin x(或cos x)为元的一次或二次等复合函数再利用换元或配方、或利用函数的单调性等来确定y的范围

    注意事项

    本文(1.4.2正弦函数、余弦函数的奇偶性、单调性和最值 教案.doc)为本站会员(e****s)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开