人教版初一(七年级)数学上册全册教案65页.doc
数学教案七年级 上册第1章 有理数 第2章 整式的加减第3章 一元一次方程 第4章 图形认识初步第一章 有理数1.1正数和负数教学目标:1、了解正数与负数是从实际需要中产生的。2、能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。3、会用正、负数表示实际问题中具有相反意义的量。重点:正、负数的概念重点:负数的概念、正确区分两种不同意义的量。2、正数和负数教师:如何来表示具有相反意义的量呢?我们现在来解决问题4提出的问题。结论:零下5用5来表示,零上5用5来表示。为了用数表示具有相反意义的量,我们把其中一种意义的量。如零上、向东、收入和高于等规定为正的,而把与它相反的量规定为负的。正的用小学学过的数0除外表示,负的用小学学过的数0除外在前面加上“读作负号来表示。根据需要,有时在正数前面也加上“+读作正号。注意:数0既不是正数,也不是负数。0不仅仅表示没有,也可以表示一个确定的量,如温度计中的0不是没有表示没有温度,它通常表示水结成冰时的温度。正数、负数的“+“的符号是表示量的性质相反,这种符号叫做性质符号。三、稳固知识1、课本P3 练习1,2,3,42、课本P4例归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义。四、总结什么是具有相反意义的量?什么是正数,什么是负数?引入负数后,0的意义是什么?五、布置作业课本P5习题1.1第1、2题。有理数教学目标:1、正确理解有理数的概念及分类,能够准确区分正整数、0、负整数、正分数、负分数。2、掌握有理数的分类方法,会对有理数进行分类,体验分类是数学上常用的处理问题的方法。重点:正确理解有理数的概念重点:有理数的分类教学过程:一、知识回忆,导入新课什么是正数,什么是负数?问题1:学习了负数之后 ,我们对数的认识范围扩大了,你能写出三个不同类型的数吗?请三位同学上黑板上写出,其他同学在自己的练习本上写出,如果有出现不同类型的数,同学们可上黑板补充。问题2:观察黑板上的这么数,并给它们分类。先让学生独立思考,接着讨论和交流分类的情况,得出数的类型有5类:正整数、0、负整数、正分数、负分数。二、讲授新课1、有理数的定义引导学生对前面的数进行概括,得出:正整数、零、负整数统称为整数;正分数和负分数统称分数。整数可以看作分母为1的分数,正整数、零、负整数、正分数和负分数都可以写成分数的形式,这样的数称为有理数,即整数和分数统称有理数。2、有理数的分类让学生在总结出5类数根底上,进行概括,尝试进行分类,通过交流和讨论,再加上老师适当的指导,逐步得出下面的两种分类方式。1按定义分类: 2按性质分类:有理数正有理数负有理数正整数正分数负整数负分数0有理数整数分数正整数0负整数正分数负分数数轴教学目标:1、掌握数轴的概念,理解数轴上的点和有理数的对应关系;2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3、感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。重点:正确理解数轴的概念和用数轴上的点表示有理数重点:数轴的概念和用数轴上的点表示有理数教学过程:二、讲授新课数轴的三要素:原点、正方向、单位长度2、画一条数轴。3、如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?4、哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?5、每个数到原点的距离是多少?由此你会发现了什么规律?小组讨论,交流归纳归纳出一般结论,即课本P9的归纳。三、稳固知识课本P10 练习1、2题四、总结请学生作出总结:什么是数轴?数轴的三要素是什么?如何画数轴?如何在数轴上表示有理数?五、布置作业课本P14习题1.2第2题。相反数教学目标:1、 掌握相反数的概念,进一步理解数轴上的点与数的对应关系;2、 通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;3、 体验数形结合的思想。重点:求数的相反数重点:根据相反数的意义化简符号教学过程:二、讲授新课1、相反数的定义问题:像2和2,5和5这样的两个数叫做互为相反数,试问要具备什么特点的两个数才是互为相反数?学生思考后举手答复归纳出:只有符号不同的两个数叫做互为相反数。特别地,0的相反数仍是0。2、理解概念判断:2的相反数是 5是相反数 相反数等于它本身的数只有0 符号不同的两个数互为相反数 3、多重符号的化简思考:数轴上表示相反数的两个点和原点有什么关系?a的相反数是a,a表示任意数正数、负数、0,求任意一个数的相反数就可以在这个数前加一个“号。问题1:假设把a分别换成+5,7时,这些数的相反数怎样表示?师生共同得出:+55, 77问题2:在一个数前面加上“号表示求这个数的相反数,如果在这些数前面加上“+号呢?如,+3,+(+6.2)学生答复:在一个数的前面加上“+号仍表示这个数,因为“+号可以省略。三、稳固知识课本P11 练习1、2、3题四、总结1、相反数的定义2、互为相反数的数在数轴上表示的点的特征3、 怎样求一个数的相反数?怎样表示一个数的相反数?五、布置作业课本P15习题1.2第3题。绝对值教学目标:1、理解绝对值的概念及其几何意义,通过从数形两个方面理解绝对值的意义,初步了解数形结合的思想方法。2、会求一个数的绝对值,知道一个数的绝对值,会求这个数。3、掌握绝对值的有关性质。4、通过应用绝对值解决实际问题,培养学生深厚的学习兴趣,提高学生学数学的好奇心和求知欲。重点:绝对值的概念重点:绝对值的几何意义教学过程:二、讲授新课问题1:请说出在数轴上,+3和3分别在原点的哪边?距离原点有几个单位长度?那对于5,+7,0呢?请两位同学起来答复。教师归纳:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。为了方便,我们用一种符号来表示一个数的绝对值,约定在一个数的两旁各画一条竖线来表示这个数的绝对值,记作a,读作a的绝对值。数aa的相反数 aa的绝对值a20510.5010.5205填表:学生独立完成后,再对所得的规律进行小组讨论。教师归纳:由绝对值的定义可知:一个正数的绝对值是它本身一个负数的绝对值是它的相反数0的绝对值是0问题2:把绝对值的代数定义用数学符号如何表示?当a0时,a=a;当a0时,a=0;当a0时,a=a。三、稳固知识课本P12 练习第1、2题。四、总结本节课主要学习绝对值的概念、表示方法及其几何意义,并会求一个数的绝对值。主要用到的思想是数形结合。五、布置作业课本P15习题1.2第4题。有理数的大小比拟教学目标:1、能说出有理数大小的比拟法那么;2、能熟练运用法那么结合数轴比拟有理数的大小,特别是应用绝对值概念比拟两个负数的大小。能利用数轴对多个有理数进行有序排列;3、能正确应用符号“、“、“、“,写出表示推理过程中简单的因果关系。重点:运用法那么借助数轴比拟两个有理数的大小重点:利用绝对值概念比拟两个负分数的大小教学过程:一、创设情境,引入新课 比拟:2 3 0 0注:在此练习中,对前三对数的比拟学生根本都能解决,但对第四对数的比拟会产生问题,由此引出新课。二、讲授新课规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。根据以上规定,重点探讨怎样比拟两个负数的大小。通过观察,分别让学生说出以上几类数之间的大小关系,最后教师归纳并板书:1正数大于0,0大于负数,正数大于负数;2两个负数,绝对值大的反而小。问题5:课本P13 “思考,请学生答复。三、稳固知识课本P13 例题、课本P14 练习四、总结这节课主要学习了有理数大小比拟的两种方法,一种是按照法那么,两两比拟;另一种是利用数轴,运用这种方法时,首先必须把要比拟的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用“<(或“>)连接,这种方法在比拟多个有理数大小时非常简便.五、布置作业课本P15习题1.2第5、6题。有理数的加法一教学目标:1、使学生在现实情境中理解有理数加法的意义2、经历探索有理数加法法那么的过程,掌握有理数加法法那么,并能准确地进行加法运算。3、在教学中适当渗透分类讨论思想。重点:有理数的加法法那么重点:异号两数相加的法那么教学过程:二、讲授新课1、同号两数相加的法那么问题:一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作5m。如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少?学生答复:两次运动后物体从起点向右运动了8m。写成算式就是5+38m教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?学生答复:两次运动后物体从起点向左运动了8m。写成算式就是5+38m师生共同归纳法那么:同号两数相加,取与加数相同的符号,并把绝对值相加。2、异号两数相加的法那么教师:如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向哪个方向运动了多少米?学生答复:两次运动后物体从起点向右运动了2m。写成算式就是5+32m师生借此结论引导学生归纳异号两数相加的法那么:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。3、互为相反数的两个数相加得零。教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?学生答复:经过两次运动后,物体又回到了原点。也就是物体运动了0m。师生共同归纳出:互为相反数的两个数相加得零教师:你能用加法法那么来解释这个法那么吗?学生答复:可用异号两数相加的法那么来解释。一般地,还有一个数同0相加,仍得这个数。三、稳固知识课本P18 例1,例2、课本P118 练习1、2题四、总结运算的关键:先分类,再按法那么运算;运算的步骤:先确定符号,再计算绝对值。注意:要借用数轴来进一步验证有理数的加法法那么;异号两数相加,首先要确定符号,再把绝对值相加。五、布置作业课本P24习题1.3第1、7题。有理数的加法二教学目标:1、使学生掌握有理数加法的运算律,并能运用加法运算律简化运算。2、培养学生观察、比拟、归纳及运算能力。重点:有理数加法运算律及其运用。重点:灵活运用运算律教学过程:二、讲授新课教师:你会用文字表述加法的两条运算律吗?你会用字母表示加法的这两条运算律吗?学生答复省略师生共同归纳:加法交换律:两个数相加,交换加数的位置,和不变。即:a+b=b+a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。即a+b+c=a+b+c三、稳固知识课本P20 练习1、2题四、总结本节课主要学习有理数加法运算律及其运用,主要用到的思想方法是类比思想,需要注意的是:有理数的加法运算律与小学学习的运算律相同,运用加法运算律的目的为了简化运算。解题技巧是将正数分别相加,再把负数分别相加,然后再把它们的和相加。五、布置作业课本P24习题1.3第2、8题。有理数的减法一教学目标:1、经历探索有理数减法法那么的过程,理解有理数的减法法那么2、能较熟练地进行有理数的减法运算3、初步体验由减法法那么把有理数的减法运算转化为有理数加法运算的数学转化思想。重点:有理数减法法那么及应用重点:运用有理数减法法那么解决数学问题教学过程:二、讲授新课课本P22 “探究计算:98,9+8;157,15+7问题1:以下等式成立吗?115515+5215515+5388443928844+392问题2:上面的关系式把有理数的减法转化成了有理数的加法,由此我们得到了有理数的减法法那么,你能用文字来描述吗?减去一个数,等于加上这个数的相反数。问题3:假设用a、b表示两数,你能用数学式子描述有理数的减法法那么吗?减数变为相反数作加数减号变加号a b = a + b三、稳固知识课本P22 例5、课本P23 练习1、2题四、总结在小学里学习的减法,差总是小于或等于被减数,在有理数的减法中仍是这样吗?有什么规律?做有理数的减法一定要化成加法吗?怎样做才能提高计算的速度?五、布置作业课本P24习题1.3第3、4题。有理数的减法二教学目标:1、了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算。2、通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想。3、通过加法运算练习,培养学生的运算能力。重点:依据运算法那么和运算律准确迅速地进行有理数的加减混合运算重点:省略加号的代数和的计算教学过程:二、讲授新课讲解20+357,看到这个题你会想怎么做?我们对此类题目经常采用先把减法转化为加法,这时就成了20+3,+5,7的和,加号通常可以省略,括号也可以省略。即:原式20+3+5+720+3+57提出问题:虽然加号、括号省略了,但20+3+57仍表示20,+3,+5,7的和,所以这个算式可以读作20,+3,+5,7的和,或者读作“负20加3加5减7”从而可以得出有理数加减混合运算的方法和步骤:运用减法法那么,将有理数加减混合运算中的减法转化为加法,然后省略加号和括号运用加法交换律、加法结合律进行运算。课本P23 “归纳引入相反数后,加减混合运算可以统一为加法运算。a+bc=a+b+(c)三、稳固知识课本P24 练习教师小结:有理数加减混合运算的几个主要环节为:减法转化为加法省略加号、括号运用加法交换律使同号两数分别相加按有理数加法法那么计算四、总结1、怎样做加减混合运算的题目;2、代数和形式的两种读法五、布置作业课本P24习题1.3第5题。有理数的乘法一教学目标:1、经历探索有理数乘法法那么的过程,开展学生观察、归纳、猜测的能力2、会进行有理数的乘法运算3、了解有理数的倒数定义,会求一个数的倒数。重点:有理数的乘法法那么重点:积的符号确实定教学过程:二、讲授新课问题:如图1.4-1,一只蜗牛沿直线L爬行,它现在的位置恰好是L上的点O,求:1假设蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?2假设蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?3假设蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?4假设蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?规定:向左为负,向右为正,同样规定:现在前为负,现在后为正。学生答复:13分钟后蜗牛应在O点的右边6cm处。可以表示为:(2)×(3) 6(2) 3分钟后蜗牛应在O点的左边6cm处。可以表示为:(2)×(3) 6(3) 3分钟前蜗牛应在O点的左边6cm处。可以表示为:(2)×(3) 6(4) 3分钟前蜗牛应在O点的右边6cm处。可以表示为:(2)×(3) 6请学生观察以下式子:1+2×+3+6 22×+363+2×3642×3+6可以得出什么结论?根据对有理数乘法的思考,总结填空:正数乘正数积为_正_ 数负数乘正数积为_负_数正数乘负数积为_负_数负数乘负数积为_正_数乘积的绝对值等于各乘数绝对值的_积_问题:当一个因数为时,积是多少? 学生答复:积为0师生归纳:有理数乘法法那么:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。注意:1、上面的法那么是对于只有两个因子相乘而言的。2、做乘法的步骤是:先确定积的符号,再确定积的绝对值。课本P30 例1教师:像上题中提到的两个数2与1/2它们的乘积为1,那么这两个数也可说互为倒数倒数的定义:乘积为1的两个数互为倒数,0没有倒数,比方说,2与1/2,3与1/3,0.3与10/3例:求以下各数的倒数:2,3/4,0.2,8/3,1.解:2的倒数为1/2; ¾的倒数为4/3; 0.2的倒数为5; 8/3的倒数为3/8; 1的倒数仍为1;思考:如何求一个数的倒数? 两个数互为倒数有何特点?总结:1、求倒数的方法,把作任何一个非0有理数看成是分数,然后颠倒其分子分母即可2、两个数互为倒数,这两个数同号,且它们的绝对值除1与1之外分布于1的两侧。课本P30 例2三、总结本节课主要学习了有理数的乘法法那么以及如何利用乘法法那么进行运算,学习了有理数的倒数定义,求一个数的倒数。四、布置作业课本P30 练习1、2、3题有理数的乘法二教学目标:1、经历探索多个有理数乘法过程,开展学生观察、归纳、猜测的能力2、理解并掌握有理数乘法的运算步骤3、能运用乘法法那么计算,进一步提高学生的运算能力重点:多个有理数相乘的顺序,以及积的符号与负因数的个数关系重点:积的符号由负因数的个数确定教学过程:一、创设情境,引入新课师生归纳:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。二、讲授例题课本P31 例3问题:从例3中,多个不是0的数相乘,先做哪一步,再做哪一步?可以得出:先确定积的符号,再求各个绝对值的积。课本P32 “思考,从思考中,我们可以得出几个数相乘,如果其中有因数为0,积就等于0。三、稳固知识课本P32 练习四、总结本节课主要学习了多个有理数相乘的运算步骤以及顺序,并掌握积的符号由负因数的个数确定。五、布置作业课本P38 习题1.4 第7题中的12(3)6有理数的乘法三教学目标:1、经历探索有理数乘法的运算律的过程,开展学生观察、归纳、猜测的能力2、理解并掌握有理数乘法的运算律:乘法交换律、乘法结合律、分配律3、能运用乘法运算律简化计算,进一步提高学生的运算能力重点:运用乘法运算律进行乘法运算重点:运用乘法法那么和乘法运算律进行乘法运算教学过程:二、讲授新课问题1:你能用语言描述乘法交换律、乘法结合律、分配律吗?学生:乘法交换律:两个数相乘,交换因数的位置,积相等。乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。问题2:如果用a、b、c分别表示任何一个有理数,那么,你能用这些字母表示这些运算律?乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)分配律:ab+c=ab+aca×b也可以写成a·b或ab。当用字母表示乘数时,“×号可以写成“· 或省略。三、稳固知识课本P33 例4、课本P33 “思考比拟例4中两种解法,它们在运算顺序上有什么区别?解法2用了什么运算律?哪种解法运算量小?学生答复:解法1先算括号内的,再算乘法,解法2运用了乘法分配律,解法2的运算量较小。四、总结本节课主要学习有理数乘法的运算律:乘法交换律、乘法结合律、分配律五、布置作业课本P33 练习有理数的除法一教学目标:1、理解有理数除法的意义,熟练掌握有理数除法法那么,会进行有理数的除法运算; 2、了解倒数概念,会求给定有理数的倒数; 3、通过将除法运算转化为乘法运算,培养学生的转化的思想;通过有理数的除法运算,培养学生的运算能力。重点:除法法那么和除法运算重点:根据除法是乘法的逆运算,归纳出除法法那么及商的符号确实定教学过程:一、温故提新:1、小学里学过有关倒数的概念是什么?怎么求一个数的倒数?用1除以这个数 4和+的倒数是多少?0有倒数吗?为什么没有?2、小学里学过的除法与乘法有何关系?例如10÷0.5=10×2;0÷5=0×,你能总结总结出一句话吗?归纳:除以一个数等于乘以这个数的倒数3、5÷0=?,0÷0=?呢?这些式子无意义也就是说0是没有倒数的。4、我们的求倒数的法那么在有理数范围中同样适用吗?你能说说以下各数的倒数是多少吗?4,25,9,37,1,a, a1, 3a, abc, xy各字母式不为0说明:一个数的倒数与其是正数或负数无关。二、讲授新课1、讲述:我们知道除法是乘法的逆运算,这套法那么运用到有理数的范围内同样适用。如果用字母表示,怎么表示?a÷b=a×() (b不为0).2、由4×1÷4=1,4×()=1等等式子,可知:互为倒数的两个数的积为1。用字母表示为:a×=1 a0两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不为0的数仍得0。注意:零不能作除数思考:以下等式成立吗?8÷4=8×;由此你得出什么规律?一般的,有理数乘法与除法之间有以下关系:除以一个数不等于零,等于乘以这个数的倒数三、稳固知识课本P34 例5教师:分数可以理解为分子除以分母。课本P35 例6四、小结:1有理数的除法法那么是什么?2如何运用除法法那么进行有理数的除法运算?五、布置作业课本P35 练习、P38 习题1.4 第4、5题有理数的除法二教学目标:1、理解有理数的加、减、乘、除混合运算顺序;正确熟练地进行有理数的混合运算2、培养学生解题的良好习惯3、在观察、实践的过程中,获得有理数四那么混合运算的初步经验。重点:运算顺序确实定重点:灵活运用运算律进行有理数混合运算教学过程:一、复习稳固,回忆知识1、计算:110×3×0.1×628+0.5×8×33×××0.252、计算:19÷3 ;264÷8;31÷7;40÷5课本P36 练习三、稳固知识四、总结有理数混合运算的顺序:1先算乘除,再算加减;2同一级运算按从左到右的顺序进行;3如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。五、布置作业课本P39习题1.4 第8、10、11题乘方一教学目标:1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算;2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。重点:正确理解乘方的意义,能利用乘方的运算法那么进行有理数的乘方运算。重点:会进行有理数的乘方运算,弄清an与a n的区别教学过程:教师归纳:1a×a可记为a22a×a×a可记为a332×2×2×2×2×2可记为254a×a×a×a××an个a可记为an指数an底数幂乘方的概念1乘方的意义求n个相同的因数a的乘积的运算叫做乘方,乘方的结果叫做幂,a叫做底数,n叫做指数。2乘方的读法把an读作a的n次方或者a的n次幂其中一个数可以看作这个数本身的一次方。讲解课本P41例1教师:请同学们计算以下各题:5,5,4,一个学生区别5和有什么不同。教师归纳:负数的奇次幂是负数;负数和偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0。当底数是负数或分数时,要加括号。二、稳固知识课本P42练习三、总结本节课主要学习了乘方中的底数、指数和幂的概念,会求有理数的正整数指数幂,掌握乘方运算与乘法运算的关系,会进行有理数的乘方运算。四、布置作业课本P47 习题1.5第1题乘方二教学目标:1、知道有理数混合运算的顺序,会进行有理数的混合运算。2、弄清与乘方有关的排列规律,学会观察一些特殊的数字的排列规律。重点:有理数的混合运算的运算顺序难点:学会有理数混合运算教学过程:一、创设情境,引入新课问题:计算23+3×42+232÷2解:原式8+3×189÷28+544.58+54+4.557.5教师归纳:有理数的混合运算顺序:1先乘方,再乘除,最后加减;2同级运算,从左到右进行;3如有括号,就先进行括号内的运算,按小括号,中括号,大括号的顺序依次进行。二、讲解例题课本P43 例3、例4教师:请同学们观察例4中的三行数,其中先观察第1行,我们可以从第1行中看出这些数字是按什么规律来排列的?学生:第1行的数是按2,22,23,24,25,的顺序排列的。教师:那我们现在接着观察第2行,它是怎样排列的?学生:第2行的数是按2+2,22+2,23+2,24+2,25+2,的顺序排列的,也就是说,它是在第1行的相应的数加上2的。教师:那我们往下看第3行,它又是怎样排列的?学生:第3行的数是按2 ×0.5,22×0.5,23×0.5,24×0.5,25×0.5,的顺序排列的,也就是说,第3行的数是第1行相应的数的0.5倍。教师:同学们归纳得很好,那我们来看例4的第3小题,它要求的是,取每行数的第10个数,计算这三个数的和。那这三行的第10个数分别是什么?学生:第1行的是210,第2行的是210+2,第3行的是210×0.5。三、稳固知识课本P44 练习四、总结本节主要学习有理数的混合运算,掌握有理数的乘方是比乘法更高级的一种运算。五、布置作业课本P47 习题1.5第3题科学记数法教学目标:1、借助身边熟悉的事物体会大数,并会用科学记数法表示大数2、通过用科学记数法表示大数的学习,让学生从多种角度感受大数,促使学生重视大数的现实意义,以开展学生的数感。重点:正确使用科学记数法表示大于10的数难点:正确掌握10n的特征以及科学记数法中n与数位的关系教学过程:一、创设情境,提出问题问题:2007年10月24日18时中国月球探测工程“嫦娥一号卫星在西昌卫星发射中心升空飞向月球。已经地球距离月球外表约为384 000 000米。这样大的数,读写都有一定的困难。这节课我们就来学习表示大数的一种方法科学记数法。二、探索新知,讲授新课问题1:你知道102,103,104分别等于多少吗?10n的意义是什么?学生答复省略教师:10n10×10×10×10××10n个10,10的n次幂等于1后面有n个0。问题2:请你把100 000写成10的乘方的形式教师:100 000105,1后面有几个0就等于10的几次方。问题3:用10的乘方来表示以下各数。696 000,300 000 000 ,6 100 000 000,484 000 000 000教师:请同学们自己先写出,再与同桌之间讨论自己的结果。696 0006.96×105300 000 000 3×1086 100 000 0006.1×109484 000 000 0004.84×1011问题2:观察上面的结果,你发现把大数表示成了什么形式?教师:把一个大于10的数表示成了a×10n的形式,其中a是整数位数只有一位的数,n是正整数。我们把这种表示数的方法叫做科学记数法。即对于大数N,可以表示成为N=a×10n,其中1a10,n是正整数。三、稳固知识讲解课本P45例5问题1:请同学们看P45的“思考,上面的式子中,等号左边整数的位数与右边10的指数有什么关系?用科学记数法表示一个n位整数,其中10的指数是多少?师生共同得出:n整数位数1,整数位数n+1问题2:以下用科学记数法表示的数,原数是什么?3.2×104;6.5×105;2.35×107请同学做课本P45 练习四、总结本节主要学习用科学记数法表示大数的方法,应该注意:任意一个大于10的数表示成了a×10n的形式,其中10的指数n应等于整数位数减1,1a10,n是正整数。五、布置作业课本P47 习题1.5第4、5题近似数教学目标:使学生初步理解和掌握近似数的有效数字的概念,并由给出一个四舍五入得到的近似数,能确切确实定它的精确度和有效数字。重点:近似数、精确度、有效数字概念。难点:由给出的近似数求其精确度及有效数字。教学过程二、合作交流,解读探究按四舍五入法对圆周率取近似数,即完成教科书P45的填空。通过填空,引出有效数字的概念,强调对于一个近似数,从左边第一个不是0的数字起,到末位数字为止,所有数字都叫这个数的有效数字,举例说明零“是还是“不是有效数字,让学生辩别。使学生明白近似数的精确度让学生实践按要求取近似数有效数字要概念重点是“0辩别使学生印象更深刻。三、稳固知识师生共同完教科书P46 例6学生思考:近似数1.8和1.80一样吗?为什么?学生答复:1精确度不同;2有效数字不同。课本P46 练习四、总结李节主要学习近似数和有效数字的概念,并能按要求取近似数和保存有效数字,但要注意:有效数字在确定时,要从左边第一个不为0的数字起,到精确到的数字止,大数按要求保存有效数字时,要先用科学记数法表示后再按要求保存。五、布置作业课本P47 习题1.5第6题本章复习教学目标:1、复习整理有理数的有关概念和有理数运算法那么,运算律以及近似计算等有关知识。2、培养学生综合运用知识解决问题的能力。3、渗透数形结合的思想。重点:有理数概念和有理数运算难点:对有理数运算法那么和理解教学过程:一、知识梳理:1、正数与负数:给出4个问题,让学生了解负数产生的必要性和负数在生产、生活中的应用。答复以下问题1温度为4是什么意思?2如果向正北规定为正,那么走70米是什么意思?321世纪的第一年,日本的效劳出口额比上一年增长了-7.3%,这里的“效劳出口额比上一年增长了-7.3%是什么意思?4请同学们谈一谈,为什么要引入负数?你还能举出生活中有关负数的例子吗?2、有理数的分类:通过2个问题让学生掌握有理数的两种分类方法,理解有理数的意义。1请说出以下各数哪些是整数、分数、正整数、负分数、非负数?课本P62第一题3.5 , -3.5, 0, | -2|, -2, -1, -, 0.5;2请将上面的各数按一定的标准分成两类,并说明你是根据什么来分类的?假设要分成三类,又该怎样分?分类的标准又是什么?3、相反数、倒数、绝对值: 说出8个数的相反数、倒数、绝对值。4、数轴:1请你画一条数轴;并说一说画数轴时要注意什么?2在你所画的数轴上表示出上面的8个数。5、有理数大小的比拟: 1请你将上面的8个数用“连接起来,并说明你是怎样解决这个问题的?2说一说比拟两个有理数的大小有哪些方法?6、有理数的乘方:1an其中n是正整数表示什么意思?其中a、n的名称分别是什么?2当a、n满足什么条件时,an的值大于0?7、科学记数法、近似数和有效数字:通过2个问题引导学生回忆 2请你说出1.6与1.60这两个近似数有什么不同?二、运算法那么及运算律1、有理数的加法法那么同号两数相加,和取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;一个数与零相加仍得这个数;两个互为相反数相加和为零。用符号表述: 2、有理数的减法法那么: 减去一个数等于加上这个数的相反数。3、有理数的乘法法那么:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘都得零;几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;几个有理数相乘,假设其中有一个为零,积就为零。4、有理数的除法法那么: 法那么一:两个有理数相除,同号得正,异号得负,并把绝对值相除; 法那么二:除以一个数等于乘以这个数的倒数。5、有理数的乘方: 正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。6、有理数的运算顺序: 先算乘方,再算乘除,最后算加减;如果有括号,那么先算括号内,再算括号外。7、运算律:加法的交换律;加法的结合律;乘法的交换律;乘法的结合律;乘法对加法的分配律;注:除法没有分配律。三、总结要注意的几个问题1有理数的两种分类经常用到,应注意它们的区别;2数轴的三要素缺一不可,利用数轴可直观地比拟有理数的大小;3相反数指的是两个仅符号不同的数,数轴上表示一对相反数的两个点到原点的距离相等,它们的和为0;而倒数指的是两个乘积为1的数;4一个数的绝对值总是非负数,数a的绝对值是数轴上表示数a的点到原点的距离;5要熟练掌握运算法那么,在法那么的指导下进行运算,做到有理有据;要时刻注意运算的顺序,在计算前,要认真观察式子,选择正确的顺序进行运算;在每一步的计算过程中,要先确定符号,再进行绝对值的计算;灵活运用运算律可以提高运算的速度和正确率,运算律可以正向用也可以逆向用。四、布置作业课本P51 复