20xx高三物理复习知识点:机械波.docx
20xx高三物理复习知识点:机械波20xx高考物理第一轮复习必备学问点:机械波 20xx高考物理第一轮复习必备学问点:机械波 机械振动在介质中的传播称为机械波(mechanicalwave)。机械波与电磁波既有相像之处又有不同之处,机械波由机械振动产生,电磁波由电磁振荡产生;机械波的传播须要特定的介质,在不同介质中的传播速度也不同,在真空中根本不能传播,而电磁波(例如光波)可以在真空中传播;机械波可以是横波和纵波,但电磁波只能是横波;机械波与电磁波的很多物理性质,如:折射、反射等是一样的,描述它们的物理量也是相同的。常见的机械波有:水波、声波、地震波。机械振动产朝气械波,机械波的传递肯定要有介质,有机械振动但不肯定有机械波产生。形成条件波源波源也称振源,指能够维持振动的传播,不间断的输入能量,并能发出波的物体或物体所在的初始位置。波源即是机械波形成的必要条件,也是电磁波形成的必要条件。波源可以认为是第一个起先振动的质点,波源起先振动后,介质中的其他质点就以波源的频率做受迫振动,波源的频率等于波的频率。介质广义的介质可以是包含一种物质的另一种物质。在机械波中,介质特指机械波借以传播的物质。仅有波源而没有介质时,机械波不会产生,例如,真空中的闹钟无法发出声音。机械波在介质中的传播速率是由介质本身的固有性质确定的。在不同介质中,波速是不同的。下表给出了0时,声波在不同介质的传播速度,数据取自一般中学课程标准试验教科书-物理(选修3-4)(2022年)1。单位v/m·s-1传播方式与特点质点的运动机械波在传播过程中,每一个质点都只做上下(左右)的简谐振动,即,质点本身并不随着机械波的传播而前进,也就是说,机械波的一质点运动是沿一水平直线进行的。例如:人的声带不会随着声波的传播而离开口腔。简谐振动做等幅振动,志向状态下可看作做能量守恒的运动.阻尼振动为能量渐渐损失的运动.为了说明机械波在传播时质点运动的特点,现已绳波(右下图)为例进行介绍,其他形式的机械波同理1。绳波是一种简洁的横波,在日常生活中,我们拿起一根绳子的一端进行一次抖动,就可以望见一个波形在绳子上传播,假如连绵不断地进行周期性上下抖动,就形成了绳波1。把绳分成很多小部分,每一小部分都看成一个质点,相邻两个质点间,有弹力的相互作用。第一个质点在外力作用下振动后,就会带动其次个质点振动,只是质点二的振动比前者落后。这样,前一个质点的振动带动后一个质点的振动,依次带动下去,振动也就发生区域向远处的传播,从而形成了绳波。假如在绳子上任取一点系上红布条,我们还可以发觉,红布条只是在上下振动,并没有随波前进1。由此,我们可以发觉,介质中的每个质点,在波传播时,都只做简谐振动(可以是上下,也可以是左右),机械波可以看成是一种运动形式的传播,质点本身不会沿着波的传播方向移动。对质点运动方向的判定有许多方法,比如对比前一个质点的运动;还可以用上坡下,下坡上进行判定,即沿着波的传播方向,向上远离平衡位置的质点向下运动,向下远离平衡位置的质点向上运动。机械波传播的本质在机械波传播的过程中,介质里原来相对静止的质点,随着机械波的传播而发生振动,这表明这些质点获得了能量,这个能量是从波源通过前面的质点依次传来的。所以,机械波传播的实质是能量的传播,这种能量可以很小,也可以很大,海洋的潮汐能甚至可以用来发电,这是维持机械波(水波)传播的能量转化成了电能。机械波机械振动在介质中的传播称为机械波。机械波与电磁波既有相像之处又有不同之处,机械波由机械振动产生,电磁波由电磁振荡产生;机械波的传播须要特定的介质,在不同介质中的传播速度也不同,在真空中根本不能传播,而电磁波,例如光波,可以在真空中传播;机械波可以是横波和纵波,但电磁波只能是横波;机械波与电磁波的很多物理性质,如:折射、反射等是一样的,描述它们的物理量也是相同的。常见的机械波有:水波、声波、地震波。 20xx高三物理复习学问点 20xx高三物理复习学问点 一、质点的运动(1)-直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=(Vo2+Vt2)/26.位移s=V平t=Vot+at=Vt/2t7.加速度a=(Vt-Vo)/t以Vo为正方向,a与Vo同向(加速)a0;反向则a08.试验用推论s=aT2s为连续相邻相等时间(T)内位移之差9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。注:(1)平均速度是矢量;(2)物体速度大,加速度不肯定大;(3)a=(Vt-Vo)/t只是量度式,不是确定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻见第一册P19/s-t图、v-t图/速度与速率、瞬时速度见第一册P24。2)自由落体运动1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt(从Vo位置向下计算)4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9.8m/s210m/s2(重力加速度在赤道旁边较小,在高山处比平地小,方向竖直向下)。(3)竖直上抛运动1.位移s=Vot-gt2.末速度Vt=Vo-gt(g=9.8m/s210m/s2)3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vog(抛出点算起)5.来回时间t=2Vo/g(从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。二、质点的运动(2)-曲线运动、万有引力1)平抛运动1.水平方向速度:Vx=Vo2.竖直方向速度:Vy=gt3.水平方向位移:x=Vot4.竖直方向位移:y=gt5.运动时间t=(2y/g)(通常又表示为(2h/g)6.合速度Vt=(Vx2+Vy2)=Vo2+(gt)2合速度方向与水平夹角:tg=Vy/Vx=gt/V07.合位移:s=(x2+y2),位移方向与水平夹角:tg=y/x=gt/2Vo8.水平方向加速度:ax=0;竖直方向加速度:ay=g注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;(2)运动时间由下落高度h(y)确定与水平抛出速度无关;(3)与的关系为tg=2tg;(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同始终线上时,物体做曲线运动。2)匀速圆周运动1.线速度V=s/t=2r/T2.角速度=/t=2/T=2f3.向心加速度a=V2/r=2r=(2/T)2r4.向心力F心=mV2/r=m2r=mr(2/T)2=mv=F合5.周期与频率:T=1/f6.角速度与线速度的关系:V=r7.角速度与转速的关系=2n(此处频率与转速意义相同)8.主要物理量及单位:弧长(s):米(m);角度():弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度():rad/s;向心加速度:m/s2。注:(1)向心力可以由某个详细力供应,也可以由合力供应,还可以由分力供应,方向始终与速度方向垂直,指向圆心;(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只变更速度的方向,不变更速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断变更。3)万有引力1.开普勒第三定律:T2/R3=K(=42/GM)R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)2.万有引力定律:F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2R:天体半径(m),M:天体质量(kg)4.卫星绕行速度、角速度、周期:V=(GM/r);=(GM/r3);T=2(r3/GM)M:中心天体质量5.第一(二、三)宇宙速度V1=(g地r地)=(GM/r地)=7.9km/s;V2=11.2km/s;V3=16.7km/s6.地球同步卫星GMm/(r地+h)2=m42(r地+h)/T2h36000km,h:距地球表面的高度,r地:地球的半径注:(1)天体运动所需的向心力由万有引力供应,F向=F万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小放射速度均为7.9km/s。三、力(常见的力、力的合成与分解)1)常见的力1.重力G=mg(方向竖直向下,g=9.8m/s210m/s2,作用点在重心,适用于地球表面旁边)2.胡克定律F=kx方向沿复原形变方向,k:劲度系数(N/m),x:形变量(m)3.滑动摩擦力F=FN与物体相对运动方向相反,:摩擦因数,FN:正压力(N)4.静摩擦力0f静fm(与物体相对运动趋势方向相反,fm为最大静摩擦力)5.万有引力F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上) 6.静电力F=kQ1Q2/r2(k=9.0×109N?m2/C2,方向在它们的连线上)7.电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)8.安培力F=BILsin(为B与L的夹角,当LB时:F=BIL,B/L时:F=0)9.洛仑兹力f=qVBsin(为B与V的夹角,当VB时:f=qVB,V/B时:f=0)注:(1)劲度系数k由弹簧自身确定;(2)摩擦因数与压力大小及接触面积大小无关,由接触面材料特性与表面状况等确定;(3)fm略大于FN,一般视为fmFN;(4)其它相关内容:静摩擦力(大小、方向)见第一册P8;(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);(6)安培力与洛仑兹力方向均用左手定则判定。2)力的合成与分解1.同始终线上力的合成同向:F=F1+F2,反向:F=F1-F2(F1F2)2.互成角度力的合成:F=(F12+F22+2F1F2cos)(余弦定理)F1F2时:F=(F12+F22)3.合力大小范围:|F1-F2|F|F1+F2|4.力的正交分解:Fx=Fcos,Fy=Fsin(为合力与x轴之间的夹角tg=Fy/Fx)注:(1)力(矢量)的合成与分解遵循平行四边形定则;(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;(4)F1与F2的值肯定时,F1与F2的夹角(角)越大,合力越小;(5)同始终线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。四、动力学(运动和力)1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它变更这种状态为止2.牛顿其次运动定律:F合=ma或a=F合/ma由合外力确定,与合外力方向一样3.牛顿第三运动定律:F=-F负号表示方向相反,F、F各自作用在对方,平衡力与作用力反作用力区分,实际应用:反冲运动4.共点力的平衡F合=0,推广正交分解法、三力汇交原理5.超重:FNG,失重:FNr3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用见第一册P1755.机械波、横波、纵波见其次册P26.波速v=s/t=f=/T波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所确定7.声波的波速(在空气中)0:332m/s;20:344m/s;30:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔接着传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源放射频率与接收频率不同相互接近,接收频率增大,反之,减小见其次册P21注:(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;(4)干涉与衍射是波特有的;(5)振动图象与波动图象;(6)其它相关内容:超声波及其应用见其次册P22/振动中的能量转化见第一册P173。六、冲量与动量(物体的受力与动量的改变)1.动量:p=mvp:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同3.冲量:I=FtI:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F确定4.动量定理:I=p或Ft=mvtmvop:动量改变p=mvtmvo,是矢量式5.动量守恒定律:p前总=p后总或p=p也可以是m1v1+m2v2=m1v1+m2v26.弹性碰撞:p=0;Ek=0即系统的动量和动能均守恒7.非弹性碰撞p=0;0EKEKmEK:损失的动能,EKm:损失的最大动能8.完全非弹性碰撞p=0;EK=EKm碰后连在一起成一整体9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1=(m1-m2)v1/(m1+m2)v2=2m1v1/(m1+m2)10.由9得的推论-等质量弹性正碰时二者交换速度(动能守恒、动量守恒)11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo-(M+m)vt=fs相对 20xx高三物理复习学问点:单摆 20xx高三物理复习学问点:单摆 四、单摆1.理解单摆振动的特点及它做简谐运动的条件;2.视察演示试验,概括出周期的影响因素,培育学生由试验现象得出物理结论的实力。3.驾驭并学会应用单摆振动的周期公式。【重点、难点分析】1.本课重点在于驾驭好单摆的周期公式及其成立条件。2.本课难点在于单摆回复力的分析。解决方案:对于重点内容通过课堂巩固练习加深印象。本课难点在于力的分析上,由老师画好受力分析图,用彩粉笔标示,同时引导学生看书,这部分内容属于A类要求及了解内容,只要使大部分学生能明白基本过程即可,重在强调最终结论。 【教学过程】一、单摆振动的特点(回复力和平衡位置)1、单摆及其平衡位置一根绳子上端固定,下端系着一个球。物理上的单摆,是在一个固定的悬点下,用一根不行伸长的细绳,系住一个肯定质量的质点,在竖直平面内小角度地摇摆。假如悬挂小球的细线的伸缩和质量可以忽视,线长又比球的直径大得多,这样的装置叫单摆.问题:为什么对单摆有上述限制要求呢?线的伸缩和质量可以忽视-使摆线有肯定的长度而无质量,质量全部集中在摆球上.线长比球的直径大得多,可把摆球当作一个质点,只有质量无大小,悬线的长度就是摆长.单摆是实际摆的志向化的物理模型.另外,单摆绳要轻而长,球要小而重都是为了削减阻力。2、单摆的回复力答:单摆的回复力由绳的拉力和重力的合力来供应。分析过程:1、不行能是重力或绳子的拉力。2、不行能是重力和拉力的合力。在探讨摆球沿圆弧的运动状况时,要以不考虑与摆球运动方向垂直的力,而只考虑沿摆球运动方向的力,如图乙所示.因为F垂直于v,所以,我们可将重力G分解到速度v的方向及垂直于v的方向.且G1=Gsin=mgsinG2=Gcos=mgcos说明:正是沿运动方向的合力G1=mgsin供应了摆球摇摆的回复力.二、单摆振动是简谐运动推导:在摆角很小时,sin=又回复力F=mgsinF=mg·(x表示摆球偏离平衡位置的位移,l表示单摆的摆长)在摆角很小时,回复力的方向与摆球偏离平衡位置的位移方向相反,大小成正比,单摆做简谐运动.知道简谐运动的图象是正弦(或余弦曲线),那么在摆角很小的状况下,既然单摆做的是简谐运动,它振动的图象也是正弦或余弦曲线.三、单摆的周期1、周期与振幅无关演示1摆角小于5°的状况下,把两个摆球从不同高度释放。现象:摆球同步振动,说明单摆振动的周期和振幅无关。2、周期与摆球质量无关演示2将摆长相同,质量不同的摆球拉到同一高度释放。现象:两摆球摇摆是同步的,即说明单摆的周期与摆球质量无关。那么就可以用这两个单摆去探讨周期和振幅的关系了,在做之前还要明确一点,振幅是不是可随意取?这个试验主要是为探讨属于简谐运动的单摆振动的周期,所以摆角不要超过5°。3、刚才做过的两个演示试验,证明了单摆振动周期和摆球质量、振幅无关,那么周期和什么有关?由前所说这两个摆摆长相等,假如L不等,变更了这个条件会不会影响周期?演示3取摆长不同,两个摆球从某一高度同时释放,留意要5°。现象:两摆振动不同步,而且摆长越长,振动就越慢。这说明单摆振动和摆长有关。详细有什么关系呢?试验,将摆长变为原来的四倍,再测周期。荷兰物理学家通过精确测量得到单摆周期公式:4、单摆周期的这种与振幅无关的性质,叫做等时性。单摆的等时性是由伽利略首先发觉的。(此处可以讲一下伽利略发觉单摆等时性的小故事。)钟摆的摇摆就具有这种性质,摆钟也是依据这个原理制成的,据说这种等时性最早是由伽利略从教堂的灯的摇摆发觉的。假如条件变更了,比如说(拿出摆钟展示)这个钟走得慢了,那么就要把摆长调整一下,应缩短L,使T减小;假如这个钟在北京走得好好的,带到广州去会怎么样?由于广州g小于北京的g值,所以T变大,钟也会走慢;同样,把钟带到月球上钟也会变慢。5、思索:用空心铁球内部装满水做摆球,若球正下方有一小孔,水不断从孔中流出,从球内装满水到水流完为止的过程中,其振动周期的大小是_.A.不变B.变大C.先变大后变小再回到原值D.先变小后变大再回到原值四、几种特别规摆1、双线摆2、弧形槽内的摆五、小结1.单摆是一种志向化的振动模型,单摆振动的回复力是由摆球重力沿圆弧切线方向的分力mgsin供应的.2.在摆角小于5°时,回复力F=-x.单摆的振动可看成简谐运动.3.单摆的振动周期跟振幅、摆球质量的大小无关,跟摆长的平方根成正比,跟重力加速度的平方根成反比,即T=2.六、板书设计摆线-牢固的不行伸长的细线,线长比球的直径大得多摆球-选用密度大的实心球理论证明:(很小时)回复力F=mgsin单单摆在摆F与x方向相反摆角很小时F=试验验证:用砂摆的图象验证单摆的周期与振幅无关-等时性T=2与摆长的二次方根成正比与重力加速度的二次方根成反比七、思索题1.如图为一双线摆,二摆线长均为l,悬点在同一水平面上,使摆球A在垂直于纸面的方向上振动,当A球从平衡位置通过的同时,小球B在A球的正上方由静止放开,小球A、B刚好正碰,则小球B距小球A的平衡位置的距离等于多少?2.如右图所示,光滑轨道的半径为2m,C点为圆心正下方的点,A、B两点与C点相距分别为6cm与2cm,a、b两小球分别从A、B两点由静止同时放开,则两小球相碰的位置是_.A.C点B.C点右侧C.C点左侧D.不能确定3.一个摆钟从甲地拿到乙地,它的钟摆摇摆加快了,则下列对此现象的分析及调准方法的叙述中正确的是_.A.g甲g乙,将摆长适当增长B.g甲g乙,将摆长适当缩短C.g甲4.一个单摆挂在电梯内,发觉单摆的周期增大为原来的2倍,可见电梯在做加速运动,加速度a为_.A.方向向上,大小为g/2B.方向向上,大小为3g/4C.方向向下,大小为g/4D.方向向下,大小为3/4g 高三物理下册机械波学问点讲解 高三物理下册机械波学问点讲解 机械振动在介质中的传播称为机械波(mechanicalwave)。机械波与电磁波既有相像之处又有不同之处,机械波由机械振动产生,电磁波由电磁振荡产生,大家知道机械波学问点吗? 机械振动在介质中的传播称为机械波(mechanicalwave)。机械波与电磁波既有相像之处又有不同之处,机械波由机械振动产生,电磁波由电磁振荡产生;机械波的传播须要特定的介质,在不同介质中的传播速度也不同,在真空中根本不能传播,而电磁波(例如光波)可以在真空中传播;机械波可以是横波和纵波,但电磁波只能是横波;机械波与电磁波的很多物理性质,如:折射、反射等是一样的,描述它们的物理量也是相同的。常见的机械波有:水波、声波、地震波。 机械振动产朝气械波,机械波的传递肯定要有介质,有机械振动但不肯定有机械波产生。 形成条件 波源 波源也称振源,指能够维持振动的传播,不间断的输入能量,并能发出波的物体或物体所在的初始位置。波源即是机械波形成的必要条件,也是电磁波形成的必要条件。 波源可以认为是第一个起先振动的质点,波源起先振动后,介质中的其他质点就以波源的频率做受迫振动,波源的频率等于波的频率。 介质 广义的介质可以是包含一种物质的另一种物质。在机械波中,介质特指机械波借以传播的物质。仅有波源而没有介质时,机械波不会产生,例如,真空中的闹钟无法发出声音。机械波在介质中的传播速率是由介质本身的固有性质确定的。在不同介质中,波速是不同的。 传播方式与特点 机械波在传播过程中,每一个质点都只做上下(左右)的简谐振动,即,质点本身并不随着机械波的传播而前进,也就是说,机械波的一质点运动是沿一水平直线进行的。例如:人的声带不会随着声波的传播而离开口腔。简谐振动做等幅振动,志向状态下可看作做能量守恒的运动.阻尼振动为能量渐渐损失的运动. 为了说明机械波在传播时质点运动的特点,现已绳波(右下图)为例进行介绍,其他形式的机械波同理1。 绳波是一种简洁的横波,在日常生活中,我们拿起一根绳子的一端进行一次抖动,就可以望见一个波形在绳子上传播,假如连绵不断地进行周期性上下抖动,就形成了绳波1。 把绳分成很多小部分,每一小部分都看成一个质点,相邻两个质点间,有弹力的相互作用。第一个质点在外力作用下振动后,就会带动其次个质点振动,只是质点二的振动比前者落后。这样,前一个质点的振动带动后一个质点的振动,依次带动下去,振动也就发生区域向远处的传播,从而形成了绳波。假如在绳子上任取一点系上红布条,我们还可以发觉,红布条只是在上下振动,并没有随波前进1。 由此,我们可以发觉,介质中的每个质点,在波传播时,都只做简谐振动(可以是上下,也可以是左右),机械波可以看成是一种运动形式的传播,质点本身不会沿着波的传播方向移动。 对质点运动方向的判定有许多方法,比如对比前一个质点的运动;还可以用上坡下,下坡上进行判定,即沿着波的传播方向,向上远离平衡位置的质点向下运动,向下远离平衡位置的质点向上运动。 机械波传播的本质 在机械波传播的过程中,介质里原来相对静止的质点,随着机械波的传播而发生振动,这表明这些质点获得了能量,这个能量是从波源通过前面的质点依次传来的。所以,机械波传播的实质是能量的传播,这种能量可以很小,也可以很大,海洋的潮汐能甚至可以用来发电,这是维持机械波(水波)传播的能量转化成了电能。 机械波 机械振动在介质中的传播称为机械波。机械波与电磁波既有相像之处又有不同之处,机械波由机械振动产生,电磁波由电磁振荡产生;机械波的传播须要特定的介质,在不同介质中的传播速度也不同,在真空中根本不能传播,而电磁波,例如光波,可以在真空中传播;机械波可以是横波和纵波,但电磁波只能是横波;机械波与电磁波的很多物理性质,如:折射、反射等是一样的,描述它们的物理量也是相同的。常见的机械波有:水波、声波、地震波。 练习题: 1824年,法国科学家阿拉果完成了着名的圆盘试验() A.圆盘上产生了感应电动势 B.圆盘内的涡电流产生的磁场导致磁针转动 C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了改变 D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动 第18页 共18页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页