2017高考全国2卷理科数学试题及答案(共5页).doc
-
资源ID:6226309
资源大小:332.50KB
全文页数:5页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2017高考全国2卷理科数学试题及答案(共5页).doc
精选优质文档-倾情为你奉上2017年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一个选项是符合题目要求的1. ( )A、 B、 C、 D、2、设集合,若,则()A、 B、 C、 D、3、我国古代数学名著算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座层塔共挂了盏灯,且相邻两层中的下一层灯数是上一层灯数的倍,则塔的顶层共有灯( )A、1盏 B、3盏 C、5盏 D、9盏4、如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截取一部分所得,则该几何体的体积为 ( )A、90 B、63 C、42 D、365、设满足约束条件,则的最小值为 ( )A、 B、 C、 D、6、安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有 ( )A、12种 B、18种 C、24种 D、36种7、甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩。老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩。看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 ( )A、乙可以知道四人的成绩 B、丁可以知道四人的成绩C、乙、丁可以知道对方的成绩 D、乙、丁可以知道自己的成绩8、执行右面的程序框图,如果输入的,则输出的( )A、2 B、3 C、4 D、59、若双曲线C:的一条渐近线被圆所截得的弦长为2,则C的离心率为 ( )A、2 B、 C、 D、10、已知直三棱柱中,则异面直线和所成角的余弦值为 ( )A、 B、 C、 D、11、若是函数的极值点,则的极小值为 ( )A、 B、 C、 D、12、已知是边长为2的等边三角形,P为平面内一点,则的最小值是 ( )A、 B、 C、 D、二、填空题:13、一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,表示抽到的二等品件数,则= .14、函数的最大值是 .15、等差数列的前项和为,则 .16、已知是抛物线的焦点,是上一点,的延长线交轴于点,若为的中点,则 .三、解答题:解答应写出文字说明、证明过程或演算步骤。第17-21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分17、(12分)的内角的对边分别为,已知,(1)求;(2)若,面积为2,求.18、(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100各网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下: 旧养殖法 新养殖法(1)设两种养殖方法的箱产量相互独立,记表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量50kg旧养殖法新养殖法(3) 根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:0.050 0.010 0.0013.841 6.635 10.82819、(12分)如图,四棱锥中,侧面为等边三角形且垂直于底面,是中点;(1)证明:直线|平面;(2)点在棱上,且直线与底面所成角为,求二面角的余弦值;20、(12分)设为坐标原点,动点在椭圆上,过作轴的垂线,垂足为,点满足;(1)求点的轨迹方程;(2)设点在直线上,且.证明:过点且垂直于的直线过的左焦点.21、(12分)已知函数,且.(1)求;(2)证明:存在唯一的极大值点,且.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22、选修4-4:坐标系与参数方程(10分)在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;(2)设点的极坐标为,点在曲线上,求面积的最大值.23、选修4-5:不等式选讲(10分)已知,证明:(1);(2).专心-专注-专业