2022年热力学复习题1 .docx
_归纳总结汇总_ - - - - - - - - - 1.公式 d u = cv d t 适用抱负气体的任何过程;2. 3. 4. 5.6.7.8.9.10. 11. 12. 13. 14.15.16.17. 18. 19. 20. 21. 22.孤立系统的熵与能量都是守恒的;焓 h = u + p v ,对闭口系统,没有流淌功,所以系统不存在焓这个参数;绝热节流前后其焓不变,所以温度也不变;在相同热源和在相同冷源之间的一切热机,无论采纳什么工质,他们的热效率均相等;孤立系统熵增原理说明:过程进行的结果是孤立系统内各部分的熵都是增加的;凡符合热力学第肯定律的过程就肯定能实现; q = d u + w 及 q = cv d T + P d v 两式均可适用于工质,任何过程;系统经受一个可逆定温过程,由于温度没有变化,故不能与外界交换热量;当压力上升,饱和温度也上升了,故饱和蒸汽的比容将增大;通用气体常数R 与工质的种类无关,气体常数Rg 与工质的种类和状态有关;在 pv 图上定温线比定熵线更缓,TS 图上定容线比定压线更陡;PV 图上定温线是等轴双曲线;可逆循环的熵变等于零,所以可逆循环的净热等于零;依据卡诺定理,任何可逆循环的热效率都相等,且都等于1T 2其中, T2 表示低T 1温热源温度, T1 表示高温热源温度 无论可逆与不行逆循环,均有QTdS;、把热量全部变为功是不行能的;对气体加热其温度肯定上升;蒸气推动汽轮机工作的过程可以看成绝热膨胀过程,其水蒸气的焓降转换为功输出;闭口绝热系是孤立系;抱负气体绝热自由膨胀过程中温度和焓、熵都不变;透平机在空气中转动对其做功,假设该过程进行的无限缓慢随时可以到达新的平稳就可以看成是可逆过程;_精品资料_ - - - - - - -第 1 页,共 5 页_归纳总结汇总_ - - - - - - - - - 1、 典型的不行逆过程2、 平稳状态3、 平稳是否意味着系统内各点的状态参数必需完全相同4、 关于节流:不行逆,绝热节流前后焓不变抱负气体不能用节流降温蒸气压缩式制冷可以5、 抱负气体哪些量是温度的单值函数6、 定压过程的加热量全部转化为焓增;7、 定容过程全部加热量转化为内能的增量8、 关于熵的判定说法:例如任何过程,熵只增不减假设从某一初态经可逆与不行逆两条路径到达同一终点,就不行逆途径的S 必大于可逆过程的S可逆循环 S 为零,不行逆循环 S 大于零不行逆过程 S 永久大于可逆过程 S假设工质从同一初态,分别经可逆和不行逆过程,到达同一终态,已知两过程热源相同,问传热量是否相同?假设工质从同一初态动身,从相同热源吸取相同热量,问末态熵可逆与不行逆谁大?假设工质从同一初态动身,一个可逆绝热过程与一个不行逆绝热过程,能否到达相同终点?抱负气体绝热自由膨胀,熵变?任何可逆过程的熵总是不变,任何不行逆过程工质的熵总是增加的熵增大的过程必是不行逆过程将热量全部变胜利是不行能的_精品资料_ - - - - - - -第 2 页,共 5 页_归纳总结汇总_ - - - - - - - - - 9、 卡诺效率的适用条件_精品资料_ 10、水蒸气凝聚过程放热量Q,对应的饱和温度T,就该过程的熵变为多少?第 3 页,共 5 页11、抱负气体和水蒸气四个基本热力过程,PV 图和 TS 图的表示;12、关于自由膨胀的特点有哪些?热效率的运算13、热力学第一、二定律数学表达式14、- - - - - - -_归纳总结汇总_ - - - - - - - - - 6. 循环热效率公式tq1q1q2和tT 1T 1T2是否完全相同?各适用于哪些场合?答:不完全相同;前者是循环热效率的普遍表达,适用于任何循环;后者是卡诺循环热效率的表达,仅适用于卡诺循环,或同样工作于温度为T1的高温热源和温度为T2的低温热源间的一切可逆循环;7. 与大气温度相同的压缩空气可以膨胀作功,这一事实是否违反了热力学其次定律?答:不冲突;压缩空气虽然与大气有相同温度,但压力较高,与大气不处于相互平稳的状态,当压缩空气 过渡到与大气相平稳时,过程中利用系统的作功才能可以作功,这种作功并非依靠冷却单一热源,而是依 靠压缩空气的状态变化;况且,作功过程中压缩空气的状态并不依循环过程变化;8. 下述说法是否正确 :. 熵增大的过程必定为吸热过程: 熵减小的过程必为放热过程; 定熵过程必为可逆绝热过程;答:说法不对;系统的熵变来源于熵产和热熵流两个部分,不行逆绝热过程中工质并未从外界吸热,但 由于存在熵产工质的熵也会因而增大;说法是对的; 系统的熵变来源于熵产和热熵流两个部分,其中熵产必定是正值,因而仅当系统放热,热熵流为负值时,系统的熵值才可能减小;这种说法原就上是不对的;系统的熵变来源于熵产和热熵流两个部分,其中熵产必定是正值,对于 不行逆的放热过程,其热熵流为负值,当热熵流在肯定数值上恰好与熵产一样时,过程将成为定熵的;因 此:可逆的绝热过程为定熵过程,而定熵过程却不肯定是绝热过程;9. 下述说法是否有错误: 熵增大的过程必为不行逆过程; 使系统熵增大的过程必为不行逆过程; 熵产 Sg > 0 的过程必为不行逆过程; 不行逆过程的熵变 S无法运算; 假如从同一初始态到同一终态有两条途径,一为可逆,另一为不行逆,就S 不行逆S 可逆、S f,不行逆S f,可逆、S g,不行逆S g,可逆;S2<S1; 工质,热熵流就可 不行逆绝热膨胀的终态熵大于初态熵,S2>S1,不行逆绝热压缩的终态熵小于初态熵经过不行逆循环有ds0;dq0;Tr答:说法不正确;系统的熵变来源于熵产和热熵流两个部分,其中熵产必定是正值含零为正值,亦可为负值;当系统吸热时热熵流为正值,即便是可逆过程熵产为零系统的熵也增大;此说法与是一样的;假如所说的“ 系统” 指的是孤立系统就说法是正确的;不过实在不应当这样 模糊“ 系统” 这一概念;依据熵产原理,这一说法是正确的;此说法完全错误;熵是状态参数,只要过程的初、终状态确定了,系统的熵变就完全确定,与过程 无关;因此,不行逆过程熵变的运算方法之一便是借助同样初、终状态的可逆过程来进行运算;至于利用 熵的一般关系式进行熵变运算,它们根本就与过程无关; 依据熵为状态参数知,两种过程的端点状态相同时应有相同的熵变,认为S 不行逆S 可逆是错误的;_精品资料_ - - - - - - -第 4 页,共 5 页_归纳总结汇总_ - - - - - - - - - 不行逆过程将有熵产生,而可逆过程就不会产生熵,因此说Sg,不行逆Sg,可逆是正确的;熵是状态参数,过程端点状态相同时应有相同熵变,由系统熵方程0SS fS f,S g,过程可逆时SS f,可逆;不行逆时S f,不行逆SS g,不行逆,式中S g,不行逆,可见应有可逆S f,不行逆,而不是Sf,不行逆Sf,可逆;此说法不对;依据熵产原理,系统经受不行逆绝热过程后,无论是膨胀或受压缩,其熵都将增大;由熵为状态参数知,工质经过循环过程后其熵应不变,所以认为ds0是不正确的;依据克劳修斯不等式知,d q0是正Tr确的; 10. 从点 a 开头有两个可逆过程:: 定容过程a-b 和定压过程a-c ,b、c 两点在同一条绝热线上 见图 5-33 ,问 qa-b 和 qa-c 哪个大?并在 T-s 图上表示过程a-b 、a-c 及 qa-b 、qa-c;提示: : 可依据循环b s a-b-c-a考虑;答:依据循环a-b-c-a的情形应是正循环,即循环的吸热量应大于循环的放T 热量指肯定值 ;其中 qa-b 为循环的吸热量,qc-a 为循环的放热量,由此,知c sb qa-b > qa-ca 在 T-s 图上sa qa-b的大小如面积abcsbsaa 所示;P-v 图qa-c 的大小如面积acsbsaa 所示;11. 由同一初态经可逆绝热压缩和不行逆绝热压缩两种过程将某种抱负气体压缩到相同的终压,在和 T-s 图上画出两过程,并在T-s 图上示出两过程的技术功及不行逆过程的火用缺失;答:作图如下图中 12s 为可逆绝热压缩;12 为不行逆绝热压缩;T1=T1面积 1 2ss1s11 为可逆绝热压缩消耗的技术功;面积 1 2s2s1 1 为不行逆绝热压缩消耗的技术功;_精品资料_ T0为环境温度,带阴影线部分面积为不行逆过程的火用缺失;1P2P1第 5 页,共 5 页P T 2 P22s 2 2s T1P11 t1T01 可用能缺失s1s1 s2 v s - - - - - - -