欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    Stability, Convergence of Harmonious Particle SwarmOptimizer and Its Application.doc

    • 资源ID:62411871       资源大小:44.50KB        全文页数:16页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Stability, Convergence of Harmonious Particle SwarmOptimizer and Its Application.doc

    Stability, Convergence of Harmonious Particle Swarm Optimizer and Its ApplicationStability,ConvergenceofHarmoniousParticleSwarmOptimizerandItsApplicationPANFeng(潘峰),CHENJie(陈杰),CAITao(蔡涛),GANMinggang(甘明刚),WANGGuanghui(王光芒)(SchoolofInforrnationScienceandTechnology,BeijingInstituteofTechnology,Beijing100081,China)Abstract:Particleswarmoptimizer(PSO),anewevolutionarycomputationalgorithm,exhibitsgoodperfortiaweightarededucedinthispaper.Thevalueoftheinertiaweightwisenhancedto(一1.1).FurthermoreanewadaptivePSOalgorithm-harmoniousPSO(HPSO)isproposedandprovedthatHPSOisaglobalofmodeluncertaintyandnoisefromsensors,HPSOareappliedtooptimizetheparametersoffuzzyPIDcontroller.Theexperimentresultsdemonstratetheefficiencyofthemethods.Keywords:evolutionarycomputation;particleswarmoptimizer;asymptoticstability;globalconvergence;fuzzyPIDCLCnumber:TP181Documentcode:AArticleID:10040579(2021)01003506ParticleswarlTloptimizationalgorithmisapopulationbasedparalleloptimizationtechnique,whichexhibitsgoodperformanceforoptimizationproblems.Therearesomeadjustableparameters,suchastheinertiaweight,accelerationfactor,scaledfactor,andsoon,whichgreatlyinfluencetheconvergenceperpers2-4aboutthestabilityanalysishavebeenpublishedwithmanyproposedmethods.Attimek+1,theupdateequationsofthei-thparticleinthedthdimensionsearchspaceofthestandardPSOalgorithmaredefinedasfollows:譬=wk+flrid(一z乞)+c2r(户一xS),z=zk+,(1)(2)whichsatisfiesIlVm,wherewistheinertiaweight;zisthecurrentpositionoftheparticle;kisthevelocity;isthepersonalbestpositionoftheparticle;istheswarmbestpositionamongallparticles;clandc2areaccelerationfactors,respectively;Yidandrgdarerandomnumbersintherange0,1.Asanupperboundofthevelocityvectorineveryepoch,llVcanbepresentedastheLipschitzconditionofparticlesdynamicsystemslz一z乞lV.(3)Inthesearchspace,theparticles"fly"tothetargetguidedbytheswarminformationanditsowninformation.Inthispaper,thestandardparticleswalTDoptimizer(PSO)algorithmisanalyzedasadiscretedystabilityarededuced.Onthebasisoftheanalysis,anewadaptivePSOalgorithm-harmoniousPSO(HPReceived20061117SponsoredbytheTeachingandResearchAwardProgramforOutstandingYoungTeacherinHigherEducationInstituteofMOE(20010248)BeijingEducationCommitteeCoorperationBuildingFoundationBiographyPANFeng(1978一),lecturer,andropanfeng126.corft.一35JournalofBeijingInstituteofTechnology,2021,Vo1.so)isproposedandprovedtobeaglobalsearchalgorithm.Furthermore,HPSOareappliedtooptimizetheparametersoffuzzyPIDcontrollerofalinearmotordrivenplatform.1StabilityAnalysisofPSOAdjustableparametersofPSOarealwaysadjustsimplifiedandanalyzedasaconstantcoefficientdvnamxcsystem.Inthissection,thesufficientasymptoticstabilityconditionswithoutLipschitzconditionconstrainsforaccelerationfactorandinertiaweightarededuced.First,alemmaisintr0一duced51.Lemma1Atimevaryingdiscretedynamicsvstemsisdefinedasz(r/+1)=A()z().Thesufficientconditionforasymptoticstabilityofthediscrete-timesystemisthatthereexistM>2and志MsatisfyinglD(T(k,whereT(k,kM)=matnx,PisthespectralradiusandP(T(k,kM)=maxJi靠<1.Basedonlemma1,theorem1canbededuoed.Theorem1Thesufficientconditionforasymptionfactor"andinertiaweight硼satisfythefollowingconditions:r/w(一1,1),(4)¨UIuc(,k+1),±(,u)一刀(1+ProofThepressedas1+一仰standardPSOalgorithm=(1+r/w1H一0十一JI1J1-(5)canbeex(6)whereaccelerationfactor=+1,¨ciri,andinputvectorisP=('P5+k)/".ThetransfermatrixofEq.(6)isT(k,志一2):IH一一×L10JJ1+一仰¨一r/wL10_JFromlemma1,iftheconditionlD(T(k,k一2)=maxIAiI<1issatisfied,thesystemdescrjbedbyEq.(6)isasymptoticallystable.IET(k,k一2)l=LkL+rlwr/wL一L+r/w(7)whereL:(1+r/w一).ThecharacterjsticequationofEq.(7)isdescribedasD()+2础一Lk(1+)BasedonJurycriterion,ofP(?)<1is+Lkr/+(Vw).(8)thesufficientcondition()<1,【l2础一Lk(1+)+Lk仰七+J<1+Bycalculation,(一1/7,I/v)Eq.(9)andalso1r/w十一仰,2(±(二(±)1+一仰().(9)satisfyingAttimek+1,theaccelerationfactor仰andinertiaweightwshouldmeetEq.(4),Eq.(5)toan-sureasymptoticstability.Iftherangeof仰"satisfies"UI,k+1,theparticlesys-systemwilldiverge.Infact'7isaconstrictioncoefficient,whichmultipliestheinertiaweightandacce1eratlonfactortolimittheirvalues.Generally,itisadoptedas1.2DesignandGlobalConvergenceofHarmoniousPSoSimilartoGAandotherevolutionarycomputing一36一reSnarehS<一)惫)(MAMPANFeng(峰)eta1./Stability,ConvergenceofHarmoniousParticleSwarmOptimizerandItsApplicationtechniques,PSOisfacingadilemmabetweenrapidtheanalysisresultoftheorem1,akindofadaptivePSOisproposedinthispaper.Ateveryepoch,accordingtothecurrentvalueofaccelerationfactor,canbeadjusteddynamically,soastoswaYln,whichexpandsandshrinkscontinuously,cansearchthesolutionspacerepeatedly.ThelogicalflowofHPS0isCreateandinitializeaPSOswarm;Evaluateeachparticleintheswarm;Iftheavailabletimehasexpired,orreachthetermination,returnthebestsolution.Ifnot,goto;IftheconsecutivefailuretimesexceedCmxorD<DmIn,updateparticlesbasedonEqs.(4)(5),toexpandtheswarm,elseifD>Dm,shrinkthesWarm:UpdateparticlesgivenbyEqs.(4)(5)to.Intheaboveflow,Dsstandsforthediversityoftheswarm,thetermCmxistheupperboundofconsecutivefailuretimes,wherethefailuremeansthecurrentfitnessisworsethanthepreviousbestfitnessoftheswarm.D=Dev(Swarm)isdefinedasthesumofswarmvariance,andDmxdenotesthevarianceofsearchingspace.SOIisandWets6Drovidedsomeconditionsandresultsfortheglobalconvergenceofrandomsearchalgorithmsasfollows.(H1)f(D(z,)f(z)andifS,f(D(x,)f(),whereisgeneratedfromsamplespace(R,B,);z=D(x,),D:S×R一S:SisasubsetofR;Bisthe一algebraofthesubsetofR;istheprobabilitymeaSUre.(H2)Forany(Bore1)subsetAofSwithu(A)>0,thereexists1I1一(A)=0,where=0uisanonnegativemeasuredefinedonB,generallyisLebesguremeasure.Lemma2(Globalsearch)Supposethatfisameasurablefunction,SisameasurablesubsetofR,(H1)and(H2)aresatisfied.Letz0bealimPzR.M=1,'oowherePzRe.Mistheprobabilityatstepkandthepointzisgeneratedbythealgorithmintheoptimalityregion.IthasbeenprovedthatPSOdoesn'tsatisfy(H2)andlemma2inRef.3.Inthispaper,aconchitzconstraincondition,Eqs.(1)(2)ofthestandardPSOcanberepresentedas=硼乞+十1(Pz),(10)z=zk+1,(11)wherePisahypercubewhosevertexesare户and户.Fromtheabove,wehavetheorem2.Theorem2HPSOisaglobalsearchalgorithm.ProofDfl1nctionofHPSOisdefinedbelow:D(pd,xS)=户(Pkg,d)f(z)z,f(户)>,(z).ItisclearthatEq.(12)satisfys(H1).Attimek,thesupportofthei-thparticleisdefinedas=z+,乞+(户一XS),where¨isahyperspherewhosecenteriszkandradiusisP=+(P一k).ForHPSO,searchingisaprocessoftheshrink-expand-shrinkcourse.Moreover,accordingtolemma1,thereisnorestrictiononthevalue,especially,iftheswarm¨hasnon1Pt叩¨S,S1(Pz乞)'(13)thenIDkllS,Sill2,whereSandSiaretheupperandlowerboundofsearchingspaceS,respectively.If仰meetsEq.(13),thens,furtherm.reSu:1,u(u:1nS)=u(s).SoVAcS,II1一(A)=oand(H2)=0aresatisfied.一37Accordingtolemma2,HPSOisaglobalsearchalgorithm.3ExperimentsInthissection,itisfocusedonaservoplatformdirectlydrivenbylinearmotorontheverticaldirection(seeFig.1).Withthisconfiguration,allmechanicaltransmissions.suchasballorleadscrews,rackandpinions,beltsorpulleys,andgearboxesareanceandotherproblemsassociatedwiththesemechanicaltransmissions.Thenominalmodeloftheverticalplatformisidentifiedfirst,asEq.(14),sothatsomecontrolalgorithmscouldbedesignedoff?linebasedontherood?plication.G(s)=21400s+228.5s+19830'(14)However,thereareSomenonlinearfactorsintheservosystems.Fistofall,duringthemovementoflinearmotor,duetothemachinestructural,theperturbationofparameterscausethemodeluncertainty.Secondly,itisthemeasurementnoisecomefromthegyro.Takeintoaccountbothofthem.0.5%sinuSoidalvariationofmodelparametersand0.5%randomdisturbanceofgyrooutputareaddedtothenominamodelexpressedbyEq.(14).Inthissection,HPSOareappliedtooptimizethefuzzyPIDcontrollerforthenominalmodel,firstplant,consideringthosenonlinearfactors.ThefuzzyPIDcontrolsystem,combinedwithHPSO,isplottedasFig.2.Fig?2HPSO+fuzzyPIDcontrolsystemAndtheparametersofPIDcontrolleraretunedbytheoutputoffuzzyinferencesystem,asbelow:Kp:Km+AKp,KI:K10+AKI,KD:KD0+AKD.ErrorEanderrorrateEcareselectedastheinputvariable.Thefuzzyrules,membershipfunctionparametersandtheoutputgainofMamdanifuzzyinguisticvariablesE,EcandoutputlinguisticvariablesAKP,AKI,AKDarealldefinedasNs,Zo,PswhosemembershipfunctionsareGaussianfunctionfinedas一3,3forE,Ec,AKI,andAKD,respectivelyandas一0.06,0.06forAKp.Theparticlevectorisconstructedasz=Km,KIo,K瑚,PE,PEC,PP,PI,PD,wherePE,PEC,PP,PI,PDisthevariablesetsofmembershipfunc33一dimensionvector.Itisconcernedtheovershoot,thetransienttimeandsteadystateerrorofthestepresponsetoevaluatesignedfortheHPSOcanbepresentedasEq.(15).J=f(k)+k=0e(k)l+0.1u(k),(15)r10000t100愚,k=1false,true,(16)wheree(k)isthesystemerror;u(k)isthecon一一38PANFeng(潘峰)eta1./Stability,ConvergenceofHarmoniousParticleSwarmOptimizerandItsApplicationtrolleroutput;f(k),definedasEq.(16),isthenotreachthesteadystatewithinthecertainsimulatrariwise,fisequaltothetransienttime.TheparametervaluesofHPSOaregiveninTab.1.TheparametersoffuzzyPIDestimatedbyHPSOareX=0.1321,2.0648,0.0540,一1.1255,2.1959,0.7671,0.1671,0.5965,0.9883,一0.2542,1.0189,一1.3990,一0.9151,0.9190,一2.2127,0.2234,一0.1607,0.1336,0.1191,一0.1034,0.2819,一0.0100,一0.0207,0.0212.一0.0073,一0.0169,一0.0064,0.4564,1.4293,0.0516,一0.7961,ferencesystem.ko(3)Thestepresponseofthenominalmode(Fig.4)showsgoodperformanceofthecontrollerswithshorttransienttime,withoutovershoot.Consideringtheperturbationofparametersandmeasurementnoise,althoughthereisovershootforthesystem,showninFig.5,thecontrollercanreducetheovershootquicklywithashorttransienttime.-fm/一.|f_lI.t/scontrolledbyfuzzyPIDcontrolledbyfuzzyPIDgoodperformanceoftheoptimizedcontrollerthatcanproduceaccuratecurvetrackingandtherobustnessthatcanachievethedesiredcontrolperformanceevenconsideringthenonlinearfactors.一39一controlledbyfuzzyPID4ConclusionsInthispaper,thestabilitywithoutLipschitzconstraintofPSOparametershasbeenexplored,thesufficientconditionsofasymptoticstabilityhavebeenobtainedtheoretically,themathematicalrelationbetween砌andisexplored,theinertiaweightWvalueisenhancedto(一1,1).Furthermore,theHPSOhasbeenproposed,whichcanadaptivelyadjustparametersanditsglobalconvergencehasbeenproved.Intheexperimentsection,HPSOisappliedtoducingthosenonlinearfactorsandadoptingrandomsignalsasinput,responsecurvesshowthegoodperformanceoftheoptimizedcontrollersanddemonstratetheeffectivenessofHPS0.References:1KennedyJ,EberhartRC.C/ProceedingofIEEEPartideswaITnoptimizationInternationalConferenceon?-40?-NeuralNetworks.Piscataway,NJ:IEEEServiceCenter,1995:19421948.ClercM,KennedyJ.Theparticleswa1TnExplosionstabilityandconvergenceinamultidimensionalcomplex(1):5873.versityofPretoria,2002.sisofparticleswarlTloptimizationwithoutLipschitzconditionconstrainJ.ControlTheoryandApplication.2004,1(2):8690.XiaoYang.AnalysisofdynamicalsystemsM.Beijing:NorthernJiaotongUniversityPress,2002.(inChinese)niquesJ.MathematicsofOperationsResearch,1981,6:1930.mizersanditsapplicationinthelinearmotorservosystemInstituteofTechnology,2005.(inChinese)(Editor:WangYuxia)

    注意事项

    本文(Stability, Convergence of Harmonious Particle SwarmOptimizer and Its Application.doc)为本站会员(e****s)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开