26~28 何时获得最大利润、最大面积是多少Anay.docx
-
资源ID:62645442
资源大小:97.06KB
全文页数:6页
- 资源格式: DOCX
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
26~28 何时获得最大利润、最大面积是多少Anay.docx
2.62.8 何时获得最大利润、最大面积是多少、二次函数与一元二次方程(A卷)(50分钟,共100分)班级:_ 姓名:_ 得分:_ 发展性评语:_一、请准确填空(每小题3分,共24分)1.如果抛物线y=2x2+mx3的顶点在x轴正半轴上,则m=_.2.二次函数y=2x2+x,当x=_时,y有最_值,为_.它的图象与x轴_交点(填“有”或“没有”).3.已知二次函数y=ax2+bx+c的图象如图1所示.这个二次函数的表达式是y=_;当x=_时,y=3;根据图象回答:当x_时,y>0.图1图24.某一元二次方程的两个根分别为x1=2,x2=5,请写出一个经过点(2,0),(5,0)两点二次函数的表达式:_.(写出一个符合要求的即可)5.不论自变量x取什么实数,二次函数y=2x26x+m的函数值总是正值,你认为m的取值范围是_,此时关于一元二次方程2x26x+m=0的解的情况是_(填“有解”或“无解”).6.某一抛物线开口向下,且与x轴无交点,则具有这样性质的抛物线的表达式可能为_(只写一个),此类函数都有_值(填“最大”“最小”).7.半径为r的圆,如果半径增加m,那么新圆的面积S与m之间的函数关系式是_.8.如图2,一小孩将一只皮球从A处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A距地面的距离OA为1 m,球路的最高点B(8,9),则这个二次函数的表达式为_,小孩将球抛出了约_米(精确到0.1 m).二、相信你的选择(每小题3分,共24分)9.关于二次函数y=ax2+bx+c的图象有下列命题,其中是假命题的个数是( )当c=0时,函数的图象经过原点; 当b=0时,函数的图象关于y轴对称; 函数的图象最高点的纵坐标是;当c>0且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根( )A.0个 B.1个 C.2个 D.3个10.某产品进货单价为90元,按100元一个售出时,能售500个,如果这种商品涨价1元,其销售额就减少10个,为了获得最大利润,其单价应定为( )A.130元; B.120元 C.110元; D.100元11.已知抛物线y=ax2+bx+c如图3所示,则关于x的方程ax2+bx+c8=0的根的情况是A.有两个不相等的正实数根; B.有两个异号实数根;C.有两个相等的实数根;D.没有实数根.12.抛物线y=kx27x7的图象和x轴有交点,则k的取值范围是( )A.k>B.k且k0; C.k;D.k>且k013.如图4所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上,设AB=x m,长方形的面积为y m2,要使长方形的面积最大,其边长x应为( )A. m B.6 m C.15 m D. m 图3图4 图5 14.二次函数y=x24x+3的图象交x轴于A、B两点,交y轴于点C,ABC的面积为( )A.1 B.3 C.4 D.615.无论m为任何实数,二次函数y=x2+(2m)x+m的图象总过的点是( )A.(1,0);B.(1,0)C.(1,3) ;D.(1,3)16.为了备战2008奥运会,中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从2.4米高(球门横梁底侧高)入网.若足球运行的路线是抛物线y=ax2+bx+c(如图5所示),则下列结论正确的是( )a< <a<0 ab+c>0 0<b<12aA. B. C. D.三、考查你的基本功(共20分)17.(10分)某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足关系:m=1402x.(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?18.(10分)已知二次函数y=(m22)x24mx+n的图象的对称轴是x=2,且最高点在直线y=x+1上,求这个二次函数的表达式.四、生活中的数学(共20分)19.(10分)如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x m. (1)要使鸡场面积最大,鸡场的长度应为多少m?(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少m?比较(1)(2)的结果,你能得到什么结论?20.(10分)当运动中的汽车撞到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量.某型汽车的撞击影响可以用公式I=2v2来表示,其中v(千米/分)表示汽车的速度;(1)列表表示I与v的关系.(2)当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的多少倍?五.探究拓展与应用(共12分)21.(12分)如图7,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米. (1)建立如图所示的直角坐标系,求抛物线的表达式;(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少.参考答案一、1.2 2. 大 没有 3.x22x 3或1 <0或>2 4.y=x23x10 5. m> 无解 6.y=x2+x1 最大7.S=(r+m)2 8.y=x2+2x+1 16.5二、9.B 10.C 11.C 12.B 13.D 14.B 15.D 16.B三、17.解:(1)y=2x2+180x2800.(2)y=2x2+180x2800=2(x290x)2800=2(x45)2+1250.当x=45时,y最大=1250.每件商品售价定为45元最合适,此销售利润最大,为1250元.18.解:二次函数的对称轴x=2,此图象顶点的横坐标为2,此点在直线y=x+1上.y=×2+1=2.y=(m22)x24mx+n的图象顶点坐标为(2,2).=2.=2.解得m=1或m=2.最高点在直线上,a<0,m=1.y=x2+4x+n顶点为(2,2).2=4+8+n.n=2.则y=x2+4x+2.四、19.解:(1)依题意得鸡场面积y=y=x2+x=(x250x)=(x25)2+,当x=25时,y最大=,即鸡场的长度为25 m时,其面积最大为m2.(2)如中间有几道隔墙,则隔墙长为m.y=·x=x2+x=(x250x) =(x25)2+,当x=25时,y最大=,即鸡场的长度为25 m时,鸡场面积为 m2.结论:无论鸡场中间有多少道篱笆隔墙,要使鸡场面积最大,其长都是25 m.20.解:(1)如下表v210123I8202818(2)I=2·(2v)2=4×2v2.当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的4倍.五、21.解:(1)设抛物线的表达式为y=ax2+bx+c.由图知图象过以下点:(0,3.5),(1.5,3.05).抛物线的表达式为y=0.2x2+3.5.(2)设球出手时,他跳离地面的高度为h m,则球出手时,球的高度为h+1.8+0.25=(h+2.05) m,h+2.05=0.2×(2.5)2+3.5,h=0.2(m).