函数的极值与导数精品课件.ppt
函数的极值与导数函数的极值与导数 已知函数已知函数 f(xf(x)=2x)=2x3 3-6x-6x2 2+7+7(1)(1)求求f(xf(x)的单调区间的单调区间,并画出其图象并画出其图象;【复习与思考复习与思考】(2)(2)函数函数f(xf(x)在在x=0 x=0和和x=2x=2处的函数值与这处的函数值与这两点附近的函数值有什么关系两点附近的函数值有什么关系?知识回顾知识回顾利用函数的导数利用函数的导数 讨论函数讨论函数 的单调性的单调性解:解:令令 ,解得,解得 或或 ,当当 时,时,是增函数;是增函数;因此,因此,当当 时,时,是增函数;是增函数;再令再令 ,解得,解得 ,当当 时,时,是减函数;是减函数;因此,因此,分析函数分析函数 在在 附近的函数附近的函数值分别与值分别与 的关系的关系.设函数设函数y=y=f(xf(x)在在x=xx=x0 0及其附近有定义,及其附近有定义,(1)(1)如果在如果在x=xx=x0 0处的函数值比它附近所有各点的处的函数值比它附近所有各点的函数值都大,即函数值都大,即f(x)f(x0),则称则称 f(xf(x0 0)是函数是函数y=y=f(xf(x)的一个的一个极小值极小值.记作记作:y极小值极小值=f(x0)极大值与极小值统称为极大值与极小值统称为极值极值,x,x0 0叫做函数的叫做函数的极值点极值点.yabx1x2x3x4Ox 观察上述图象观察上述图象,试指出该函数的极值点与极值试指出该函数的极值点与极值,并说出哪些是极大值点并说出哪些是极大值点,哪些是极小值点哪些是极小值点.(1)(1)极值是一个极值是一个局部概念局部概念,反映了函数在某一点附反映了函数在某一点附近的大小情况近的大小情况;(2)(2)极值点极值点是是自变量的值自变量的值,极值极值指的是指的是函数值函数值;(3)(3)函数的极大函数的极大(小小)值可能不止一个值可能不止一个,而且而且函数的函数的极大值未必大于极小值极大值未必大于极小值;【关于极值概念的几点说明关于极值概念的几点说明】(4)函数的极值点一定在区间的内部,区间的端函数的极值点一定在区间的内部,区间的端点不能成为极值点。而函数的最值既可能在区点不能成为极值点。而函数的最值既可能在区间的内部取得,也可能在区间的端点取得间的内部取得,也可能在区间的端点取得。【问题探究问题探究】函数函数y=y=f(xf(x)在极值点的导数值为多少在极值点的导数值为多少?在极值点附近的导数符号有什么规律在极值点附近的导数符号有什么规律?yabx1x2x3x4Ox 一般地,当函数一般地,当函数 在点在点 处连续时,判断处连续时,判断 是极是极大(小)值的方法是:大(小)值的方法是:f(x0)=0 (1)如果在)如果在 附近的左侧附近的左侧 ,右侧,右侧 ,那,那么么 是极大值是极大值 (2)如果在)如果在 附近的左侧附近的左侧 ,右侧,右侧 ,那,那么么 是极小值是极小值注注:导数为:导数为0的点不一定是极值点的点不一定是极值点观察与思考:观察与思考:极值与导数有何关系?极值与导数有何关系?对于对于可导可导函数函数,若若x0是极值点是极值点,则则 f(x0)=0;反之反之,若若f(x0)=0,则则x0不一定是极值点不一定是极值点.函数函数y=f(x)在一点的导数为在一点的导数为0是函数在这点取极值的必要条件,是函数在这点取极值的必要条件,而非充分条件。而非充分条件。函数函数y=f(x)在在x0取极值的充分条件是取极值的充分条件是:(1)f(x0)=0(2)在在x0附近的左侧附近的左侧 f(x0)0(0),右侧,右侧f(x0)0)(1)求导数求导数f/(x);(2)解方程解方程 f/(x)=0(3)通过列表检查通过列表检查f/(x)在方程在方程f/(x)=0的根的左右两侧的符号,进而的根的左右两侧的符号,进而确定函数的极值点与极值确定函数的极值点与极值.【求函数极值的步骤求函数极值的步骤】例例、求函数求函数 的极值的极值 例题讲解例题讲解解:解:当当x变化时,变化时,的变化情况如下表:的变化情况如下表:+00+极大值极大值y2(-2,2)-2x极小值极小值令令 ,解得,解得当当 时,时,y有极大值,并且有极大值,并且当当 时,时,y有极小值,并且有极小值,并且例例、求函数求函数 的极值的极值 解:解:当当x变化时,变化时,的变化情况如下表:的变化情况如下表:无极值无极值极小值极小值0无极值无极值y+0+001(0,1)0(-1,0)-1x令令 ,解得,解得当当 时,时,y有极小值,并且有极小值,并且注意注意:函数极值是在某一点附近的小区间内定义:函数极值是在某一点附近的小区间内定义的,是的,是局部性质局部性质。因此一个函数在其整个定义区间。因此一个函数在其整个定义区间上可能有上可能有多个极大值或极小值多个极大值或极小值,并对同一个函数来,并对同一个函数来说,在某说,在某一点的极大值也可能小于另一点的极小值一点的极大值也可能小于另一点的极小值。练习练习1.判断下面判断下面4个命题,其中是真命题序号为个命题,其中是真命题序号为 。可导函数必有极值;可导函数必有极值;可导函数在极值点的导数一定等于零;可导函数在极值点的导数一定等于零;函数的极小值一定小于极大值函数的极小值一定小于极大值(设极小值、极大值都存在);(设极小值、极大值都存在);函数的极小值(或极大值)不会多于一个。函数的极小值(或极大值)不会多于一个。2、函数、函数y=f(x)的导数的导数y/与函数值和极值之间的关系为与函数值和极值之间的关系为()A、导数、导数y/由负变正由负变正,则函数则函数y由减变为增由减变为增,且有极大值且有极大值B、导数、导数y/由负变正由负变正,则函数则函数y由增变为减由增变为减,且有极大值且有极大值C、导数、导数y/由正变负由正变负,则函数则函数y由增变为减由增变为减,且有极小值且有极小值D、导数、导数y/由正变负由正变负,则函数则函数y由增变为减由增变为减,且有极大值且有极大值D练习:练习:函数函数 在在 时时有极有极值值1010,则则a,b的的值为值为()A A、或或 B B、或或C C、D D、以上都不对以上都不对 C,解解:由由题设题设条件得:条件得:解之得解之得通通过验证过验证,都合要求,故,都合要求,故应选择应选择A。注意:注意:f/(x0)=0是函数取得极值的必要不充分条件是函数取得极值的必要不充分条件注意代注意代入检验入检验 3.4.(4.(2006年年北京卷北京卷)已知函数已知函数在点在点 处取得极大值处取得极大值5,其导函数其导函数 的图像的图像(如图如图)过点(过点(1,0),(2,0),求:求:(1)的值;(的值;(2)a,b,c的值;的值;.略解:略解:(1)由图像可知:由图像可知:(2)注意:数形结合以及函数与方程思想的应用注意:数形结合以及函数与方程思想的应用