八年级数学竞赛例题专题-相对相称—对称分析法.docx
-
资源ID:62960309
资源大小:23.63KB
全文页数:14页
- 资源格式: DOCX
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
八年级数学竞赛例题专题-相对相称—对称分析法.docx
八年级数学竞赛例题专题-相对相称对称分析法八年级数学竞赛例题专题-梯形 专题21梯形阅读与思索梯形是一类具有一组对边平行而另一组对边不平行的特别四边形,梯形的主要内容是等腰梯形、直角梯形等相关概念及性质.解决梯形问题的基本思路是:通过适当添加协助线,把梯形转化为三角形或平行四边形,常见的协助线的方法有:(1)过一个顶点作一腰的平行线(平移腰);(2)过一个顶点作一条对角线的平行线(平移对角线);(3)过较短底的一个顶点作另一底的垂线;(4)延长两腰,使它们的延长线交于一点,将梯形还原为三角形如图所示: 例题与求解【例1】如图,在四边形ABCD中,AB/CD,D2B,AD和CD的长度分别为,那么AB的长是_.(荆州市竞赛试题)解题思路:平移一腰,构造平行四边形、特别三角形【例2】如图1,四边形ABCD是等腰梯形,AB/CD由四个这样的等腰梯形可以拼出图2所示的平行四边形(1)求四边形ABCD四个内角的度数;(2)摸索究四边形ABCD四条边之间存在的等量关系,并说明理由;(3)现有图1中的等腰梯形若干个,利用它们你能拼出一个菱形吗?若能,请你画出大致的示意图(山东省中考试题)解题思路:对于(1)、(2),在视察的基础上易得出结论,探寻上、下底和腰及上、下底之间的关系,从作出梯形的常见协助线入手;对于(3),在(2)的基础上,绽开想象的翅膀,就可设计出若干种图形 【例3】如图,在等腰梯形ABCD中,AD/BC,ABDC,且ACBD,AF是梯形的高,梯形的面积是49cm2,求梯形的高.(内蒙古自治区东四盟中考试题)解题思路:由于题目条件中涉及对角线位置关系,不妨从平移对角线入手【例4】如图,在等腰梯形ABCD中,AB/DC,AB998,DC1001,AD1999,点P在线段AD上,问:满意条件BPC900的点P有多少个?(全国初中数学联赛试题)解题思路:依据ABDCAD这一关系,可以在AD上取点构造等腰三角形 【例5】如图,在等腰梯形ABCD中,CD/AB,对角线AC,BD相交于O,ACD600,点S,P,Q分别为OD,OA,BC的中点(1)求证:PQS是等边三角形;(2)若AB5,CD3,求PQS的面积;(3)若PQS的面积与AOD的面积的比是7:8,求梯形上、下两底的比CD:AB(“希望杯”邀请赛试题)解题思路:多个中点给人以广泛的联想:等腰三角形性质、直角三角形斜边中线、三角形中位线等.【例6】如图,分别以ABC的边AC和BC为一边,在ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到边AB的距离是AB的一半(山东省竞赛试题)解题思路:本题考查了梯形中位线定理、全等三角形的判定与性质关键是要构造能运用条件EPPF的图形 实力训练A级1.等腰梯形中,上底:腰:下底1:2:3,则下底角的度数是_.(天津市中考试题)2.如图,直角梯形ABCD中,ABBC,AD3,BC5,将腰DC绕点D逆时针方向旋转900至DE,连接AE,则ADE的面积为_.(宁波市中考试题)3如图,在等腰梯形ABCD中,AB/CD,A,12,且梯形的周长为30cm,则这个等腰梯形的腰长为_.4.如图,梯形ABCD中,AD/BC,EF是中位线,G是BC边上任一点,假如,那么梯形ABCD的面积为_.(成都市中考试题)5.等腰梯形的两条对角线相互垂直,则梯形的高和中位线的长之间的关系是()ABCD无法确定6.梯形ABCD中,AB/DC,AB5,BC,BCD,CDA,则DC的长度是()A.B8C.D.E.(美国中学考试题)7如图,在等腰梯形ABCD中,ACBCAD,则DBC的度数是()A.300B.450C.600D.900(陕西省中考试8如图,在直角梯形ABCD中,AD/BC,ABBC,AD2,BCDC5,点P在BC上移动,则当PAPD取最小值时,APD中边AP上的高为()ABCD3(鄂州市中考试题)9如图,在等腰梯形ABCD中,AD/BC,ABCD,点P为BC边上一点,PEAB,PFCD,BGCD,垂足分别为E,F,G求证:PEPFBG(哈尔滨市中考试题) 10.如图,在梯形ABCD中,AD/BC,E,F分别为AB,AC中点,BD与EF相交于G求证:11.如图,等腰三角形ABC中,ABAC,点E、F分别是AB、AC的中点,CEBF于点O求证:(1)四边形EBCF是等腰梯形;(2)(深圳市中考试题)12.如图1,在等腰梯形ABCD中,AD/BC,E是AB的中点,过点E作EF/BC交CD于点F,AB4,BC6,B(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PMEF交BC于点M,过M作MN/AB交折线ADC于点N,连接PN,设EP当点N在线段AD上时(如图2),PMN的形态是否发生变更?若不变,求出PMN的周长;若变更,请说明理由当点N在线段DC上时(如图3),是否存在点P,使PMN为等腰三角形?若存在,恳求出全部满意要求的的值;若不存在,请说明理由(江西省中考试题) B级1.如图,在梯形ABCD中,AB/DC,ADBC,AB10,CD4,延长BD到E,使DEDB,作EFAB交BA的延长线于点F,则AF_.(山东省竞赛试题)2.如图,在梯形ABCD中,AD/BC,ABDC10cm,AC与BD相交于G,且AGD,设E为CG中点,F是AB中点,则EF长为_.(“希望杯”邀请赛试题)3.用四条线段:作为四条边,构成一个梯形,则在所构成的梯形中,中位线的长的最大值为_.(湖北赛区选拔赛试题)4.如图,梯形ABCD的两条对角线AC,BD相交于O点,且AO:CO3:2,则两条对角线将梯形分成的四个小三角形面积之比为_.(安徽省中考试题)第4题图第5题图第6题图5.如图,在四边形ABCD中,AD/BC,E是AB的中点,若DEC的面积为S,则四边形ABCD的面积为()AB2SCD(重庆市竞赛试题)6.如图,在梯形ABCD中,AD/BC,B,C,E,M,F,N分别为AB,BC,CD,DA的中点,已知BC7,MN3,则EF的值为()A4BC5D6(全国初中数学联赛试题)7.如图,梯形ABCD中,AB/DC,E是AD的中点,有以下四个命题:若ABDCBC,则BEC;若BEC,则ABDCBC;若BE是ABC的平分线,则BEC;若ABDCBC,则CE是DCB的平分线.其中真命题的个数是()A1个B2个C3个D4个(重庆市竞赛试题)8.如图,四边形ABCD是一梯形,AB/CD,ABC,AB9cm,BC8cm,CD7cm,M是AD的中点,从M作AD的垂线交BC于N,则BN的长等于()A1cmB1.5cmC2cmD2.5cm(“希望杯”邀请赛试题)9.如图,在梯形ABCD中,AB/DC,M是腰BC的中点,MNAD.求证:(山东省竞赛试题)10.如图,在梯形ABCD中,AD/BC,分别以两腰AB,CD为边向两边作正方形ABGE和正方形DCHF,设线段AD的垂直平分线交线段EF于点M.求证:点M为EF的中点.(全国初中数学联赛试题) 11.已知一个直角梯形的上底是3,下底是7,且两条对角线的长都是整数,求此直角梯形的面积.(“东方航空杯”上海市竞赛试题) 12.如图1,平面直角坐标系中,反比例函数的图象经过矩形OABD的边BD的三等分点()交AB于E,AB12,四边形OEBF的面积为16.(1)求值.(2)已知,点P从A动身以0.5cm/s速度沿AB、BD向D运动,点Q从C同时动身,以1.5cm/s的速度沿CO,OA,AB向B运动,其中一个动点到达端点时,另一个动点也随之停止运动.从运动起先,经过多少时间,四边形PQCB为等腰梯形(如图2).(3)在(2)条件下,在梯形PQCB内是否有一点M,使过M且与PB,CQ分别交于S,T的直线把PQCB的面积分成相等的两部分,若存在,请写出点M的坐标及CM的长度;若不存在,请说明理由. 八年级数学竞赛例题专题-配方法 专题25配方法阅读与思索把一个式子或一个式子的部分写成完全平方式或者几个完全平方式的和的形式,这种方法叫配方法,配方法是代数变形的重要手段,是探讨相等关系,探讨不等关系的常用技巧.配方法的作用在于变更式子的原有结构,是变形求解的一种手段;配方法的实质在于揭示式子的非负性,是挖掘隐含条件的有力工具.配方法解题的关键在于“配方”,恰当的“拆”与“添”是配方常用的技巧,常见的等式有:1、2、3、4、配方法在代数式的求值,解方程、求最值等方面有较广泛的应用,运用配方解题的关键在于:(1)具有较强的配方意识,即由题设条件的平方特征或隐含的平方关系,如能联想起配方法.(2)具有整体把握题设条件的实力,即擅长将某项拆开又重新安排组合,得到完全平方式. 例题与求解【例1】已知实数,满意,那么_(“祖冲之杯”邀请赛试题)解题思路:对题设条件实施变形,设法确定x,y的值. 【例2】若实数,c满意,则代数式的最大值是()A、27B、18C、15D、12(全国初中数学联赛试题)解题思路:运用乘法公式,将原式变形为含常数项及完全平方式的形式. 配方法的实质在于揭示式子的非负性,而非负数有以下重要性质;(1)非负数的最小值为零;(2)有限个非负数的和为零,则每一个非负数都为零.【例3】已知,求a+b+c的值.解题思路:题设条件是一个含三个未知量的等式,三个未知量,一个等式,怎样才能确定未知量的值呢?不妨用配方法试一试.复合根式的化简,含多元的根式等式问题,经常用到配方法. 【例4】证明数列49,4489,444889,44448889,的每一项都是一个完全平方数.解题思路:,由此可猜想,只需完成从左边到右边的推导过程即可. 几个好玩的结论:(1)(2)这表明:只出现1个奇数或只出现1个偶数的完全平方数分别有无限多个. 【例5】一幢33层的大楼有一部电梯停在第一层,它一次最多容纳32人,而且只能在第2层至第33层中某一层停一次,对于每个人来说,他往下走一层楼梯感到1分不满足,往上走一层楼梯感到3分不满足,现在有32个人在第一层,并且他们分别住在第2至第33层的每一层,问:电梯停在哪一层时,可以使得这32个人不满足的总分达到最小?最小值是多少?(有些人可以不乘电梯即干脆从楼梯上楼)(全国初中数学联赛试题) 解题思路:通过引元,把不满足的总分用相关字母的代数式表示,解题的关键是对这个代数式进行恰当的配方,进而求出代数式的最小值.把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题条件的目的,这种解题方法叫配方法.配方法的作用在于变更代数式的原有结构,是变形求解的一种手段;配方法的实质在于揭示式子的非负性,是挖掘隐含条件的有力工具. 【例6】已知自然数n使得为完全平方数,求n的值.(“希望杯”邀请赛试题) 解题思路:原式中n的系数为奇数,不能干脆配方,可想方法化奇为偶,解决问题. 实力训练1、计算=_.(“希望杯”邀请赛试题)2、已知,则.3、,y为实数,且,则+y的值为_.4、当2时,化简代数式,得_.5、已知,当=_,y=_时,的值最小.(全国通讯赛试题) 6、若,则MN的值()A、负数B、正数C、非负数D、可正可负7、计算的值为()A、1B、C、D、(全国初中数学联赛试题)8、设,,为实数,则x,y,z中至少有一个值()A、大于零B、等于零C、不大于零D、小于零(全国初中数学竞赛试题)9、下列代数式表示的数肯定不是某个自然数的平方(其中n为自然数)的是()A、B、C、D、E、10、已知实数,c满意,则a+b+c的值等于()A、2B、3C、4D、5(河北省竞赛试题)解“存在”、“不存在”“至少存在一个”等形式的问题时,常从整体考虑并常常用到一下重要命题:设x1,x2,x3,xn为实数.(1)若则x1,x2,x3,xn中至少有(或存在)一个为零;(2)若,则x1,x2,x3,xn中至少有(或存在)一个大于零;(3)若,则x1,x2,x3,xn中至少有(或存在)一个小于零. 11、解方程组(苏州市竞赛试题) 12、能使是完全平方数的正整数n的值为多少?(全国初中数学联赛试题) 13、已知,且,为自然数,求,的值.(天津市竞赛试题) 13、设a为质数,b为正整数,且,求,的值.(全国初中数学联赛试题) 14、某宾馆经市场调研发觉,每周该宾馆入住的房间数y与房间单价x之间存在如图所示的一次函数关系.(1)依据图象求y与x之间的函数关系式(0160);(2)从经济效益来看,你认为该宾馆如何制定房间单价,能使其每周的住宿收入最高?每周最高住宿收入是多少元? 八年级数学竞赛例题专题-正方形 专题20正方形阅读与思索矩形、菱形、正方形都是平行四边形,但它们都是有特别条件的平行四边形,正方形不仅是特别的平行四边形,而且是邻边相等的特别矩形,也是有一个角是直角的菱形,因此,我们可以利用矩形、菱形的性质来探讨正方形的有关问题正方形问题经常转化为三角形问题解决,在正方形中,我们最简单得到特别三角形、全等三角形,熟识以下基本图形例题与求解【例l】如图,在正方形纸片中,对角线,交于点,折叠正方形纸片,使落在上,点恰好与上的点重合,绽开后,折痕分别交,于点,.下列结论:;四边形是菱形;.其中,正确结论的序号是_(重庆市中考试题)解题思路:本题需综合运用轴对称、菱形判定、数形结合等学问方法【例2】如图1,操作:把正方形的对角线放在正方形的边的延长线上,取线段的中点.连,(1)探究线段,的关系,并加以证明(2)将正方形绕点旋转随意角后(如图2),其他条件不变探究线段,的关系,并加以证明(大连市中考题改编)解题思路:由为中点,想到“中线倍长法”再证三角形全等 【例3】如图,正方形中,是,边上两点,且,于,求证:.(重庆市竞赛试题)解题思路:构造的线段是解本例的关键【例4】如图,正方形被两条与边平行的线段、分割成四个小矩形,是与的交点,若矩形的面积恰是矩形面积的2倍,试确定的大小,并证明你的结论(北京市竞赛试题)解题思路:先揣测的大小,再作出证明,解题的关键是由条件及图形推出隐含的线段间的关系【例5】如图,在正方形中,分别是边,上的点,满意,分别与对角线交于点求证:(1);(2)(四川省竞赛试题)解题思路:对于(1),可作协助线,创建条件,再通过三角形全等,即可解答;对于(2),很简单联想到直角三角形三边关系 【例6】已知:正方形中,绕点顺时针旋转,它的两边分别交,(或它们的延长线)于点当绕点旋转到时(如图1),易证(1)当绕点旋转到时(如图2),线段和之间有怎样的数量关系?写出猜想,并加以证明;(2)当绕点旋转到如图3的位置时,线段和之间又有怎样的数量关系?请干脆写出你的猜想(黑龙江省中考试题)解题思路:对于(2),构造是解题的关键 实力训练A级1.如图,若四边形是正方形,是等边三角形,则的度数为_.(北京市竞赛试题)2.四边形的对角线相交于点,给出以下题设条件:;其中,能判定它是正方形的题设条件是_.(把你认为正确的序号都填在横线上)(浙江省中考试题)3如图,边长为1的两个正方形相互重合,按住一个不动,将另一个绕顶点顺时针旋转,则这两个正方形重叠部分的面积是_.(青岛市中考试题)第1题图第3题图第4题图 4.如图,是正方形内一点,将绕点顺时针方向旋转至能与重合,若,则=_.(河南省中考试题)5.将个边长都为的正方形按如图所示摆放,点分别是正方形的中心,则个正方形重叠形成的重叠部分的面积和为()A.BC.D.(晋江市中考试题) 第5题图第6题图 6.如图,以的斜边为一边在的同侧作正方形,设正方形的中心为,连接,假如,则的长为()A.12B8C.D.(浙江省竞赛试题)7如图,正方形中,那么是()A.BC.D.8如图,正方形的面积为256,点在上,点在的延长线上,的面积为200,则的值是()A15B12C11D109如图,在正方形中,是边的中点,与交于点,求证:10.如图,在正方形中,是边的中点,是上的一点,且求证:平分11.如图,已知是正方形对角线上一点,分别是垂足求证:(扬州市中考试题) 12.(1)如图1,已知正方形和正方形,在同一条直线上,为线段的中点探究:线段的关系(2)如图2,若将正方形绕点顺时针旋转,使得正方形的对角线在正方形的边的延长线上,为的中点试问:(1)中探究的结论是否成立?若成立,请证明;若不成立,请说明理由(大连市中考试题) 图1图2 B级1.如图,在四边形中,于,若四边形的面积为8,则的长为_.2.如图,是边长为1的正方形内一点,若,则_.(北京市竞赛试题)3.如图,在中,以为一边向三角形外作正方形,正方形的中心为,且,则的长为_.(“希望杯”邀请赛试题)4.如图:边长肯定的正方形,是上一动点,交于,过作交于点,作于点,连接,下列结论:;为定值,其中肯定成立的是()A.BC.D.5.如图,是正方形,是菱形,则与度数的比值是()A.3B4C.5D.不是整数6.一个周长为20的正方形内接于一个周长为28的正方形,那么从里面正方形的顶点到外面正方形的顶点的最大距离是()A.BC.8D.E.(美国中学考试题)7.如图,正方形中,是的中点,设,在上取一点,使,则的长度等于()A.1B2C.3D.(“希望杯”邀请赛试题)8.已知正方形中,是中点,是延长线上一点,且交平分线于(如图1)(1)求证:;(2)若将上述条件中的“是中点”改为“是上随意一点”其余条件不变(如图2),(1)中结论是否成立?假如成立,请证明;假如不成立,请说明理由;(3)如图2,点是的延长线上(除点外)的随意一点,其他条件不变,则(1)中结论是否成立?假如成立,请证明;假如不成立,请说明理由;(临汾市中考试题)9.已知求证: 10.假如,点分别在正方形的边上,已知的周长等于正方形周长的一半,求的度数(“祖冲之杯”邀请赛试题)11.如图,两张大小适当的正方形纸片,重叠地放在一起,重叠部分是一个凸八边形,对角线分这个八边形为四个小的凸四边形,请你证明:,且(北京市竞赛试题)12.如图,正方形内有一点,以为边向外作正方形和正方形,连接求证:(武汉市竞赛试题) 第14页 共14页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页