初中数学知识点汇总(上).docx
初中数学知识点汇总(上)初中数学学问点总汇 初中数学学问点总汇 B:方程与不等式1:方程与方程组一元一次方程:在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。2:不等式与不等式组不等式:用符号=号连接的式子叫不等式。不等式的两边都加上或减去同一个整式,不等号的方向不变。不等式的两边都乘以或者除以一个正数,不等号方向不变。不等式的两边都乘以或除以同一个负数,不等号方向相反。不等式的解集:能使不等式成立的未知数的值,叫做不等式的解。一个含有未知数的不等式的全部解,组成这个不等式的解集。求不等式解集的过程叫做解不等式。一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。求不等式组解集的过程,叫做解不等式组。3:函数变量:因变量,自变量。在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。一次函数:若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。当B=0时,称Y是X的正比例函数。一次函数的图象:把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,全部这些点组成的图形叫做该函数的图象。正比例函数Y=KX的图象是经过原点的一条直线。在一次函数中,当K0,BO,则经234象限;当K0,B0时,则经124象限;当K0,B0时,则经134象限;当K0,B0时,则经123象限。当K0时,Y的值随X值的增大而增大,当X0时,Y的值随X值的增大而削减。 二、空间与图形A:图形的相识:1:点,线,面点,线,面:图形是由点,线,面构成的。面与面相交得线,线与线相交得点。点动成线,线动成面,面动成体。绽开与折叠:在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的全部侧棱长相等,棱柱的上下底面的形态相同,侧面的形态都是长方体。N棱柱就是底面图形有N条边的棱柱。截一个几何体:用一个平面去截一个图形,截出的面叫做截面。3视图:主视图,左视图,俯视图。多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。弧,扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。圆可以分割成若干个扇形。2:角线:线段有两个端点。将线段向一个方向无限延长就形成了射线。射线只有一个端点。将线段的两端无限延长就形成了直线。直线没有端点。经过两点有且只有一条直线。比较长短:两点之间的全部连线中,线段最短。两点之间线段的长度,叫做这两点之间的距离。角的度量与表示:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。一度的1/60是一分,一分的1/60是一秒。角的比较:角也可以看成是由一条射线围着他的端点旋转而成的。一条射线围着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边接着旋转,当他又和始边重合时,所成的角叫做周角。从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。平行:同一平面内,不相交的两条直线叫做平行线。经过直线外一点,有且只有一条直线与这条直线平行。假如两条直线都与第3条直线平行,那么这两条直线相互平行。垂直:假如两条直线相交成直角,那么这两条直线相互垂直。相互垂直的两条直线的交点叫做垂足。平面内,过一点有且只有一条直线与已知直线垂直。3:相交线与平行线角:假如两个角的和是直角,那么称和两个角互为余角;假如两个角的和是平角,那么称这两个角互为补角。同角或等角的余角/补角相等。对顶角相等。同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。 初中数学学问点记忆口诀 初中数学学问点记忆口诀 有理数的加法运算 同号两数来相加,肯定值加不变号。 异号相加大减小,大数确定和符号。 互为相反数求和,结果是零须记好。 【注】“大”减“小”是指肯定值的大小。 有理数的减法运算 减正等于加负,减负等于加正。 有理数的乘法运算符号法则 同号得正异号负,一项为零积是零。 合并同类项 说起合并同类项,法则千万不能忘。 只求系数代数和,字母指数留原样。 去、添括号法则 去括号或添括号,关键要看连接号。 扩号前面是正号,去添括号不变号。 括号前面是负号,去添括号都变号。 解方程 已知未知闹分别,分别要靠移完成。 移加变减减变加,移乘变除除变乘。 平方差公式 两数和乘两数差,等于两数平方差。 积化和差变两项,完全平方不是它。 完全平方公式 二数和或差平方,绽开式它共三项。 首平方与末平方,首末二倍中间放。 和的平方加联结,先减后加差平方。 完全平方公式 首平方又末平方,二倍首末在中心。 和的平方加再加,先减后加差平方。 解一元一次方程 先去分母再括号,移项变号要记牢。 同类各项去合并,系数化“1”还没好。 求得未知须检验,回代值等才上算。 解一元一次方程 先去分母再括号,移项合并同类项。 系数化1还没好,精确无误不白忙。 因式分解与乘法 和差化积是乘法,乘法本身是运算。 积化和差是分解,因式分解非运算。 因式分解 两式平方符号异,因式分解你别怕。 两底和乘两底差,分解结果就是它。 两式平方符号同,底积2倍坐中心。 因式分解能与否,符号上面有文章。 同和异差先平方,还要加上正负号。 同正则正负就负,异则需添幂符号。 因式分解 一提二套三分组,十字相乘也上数。 四种方法都不行,拆项添项去重组。 重组无望试求根,换元或者算余数。 多种方法敏捷选,连乘结果是基础。 同式相乘若出现,乘方表示要记住。 【注】一提(提公因式)二套(套公式) 因式分解 一提二套三分组,叉乘求根也上数。 五种方法都不行,拆项添项去重组。 对症下药稳又准,连乘结果是基础。 二次三项式的因式分解 先想完全平方式,十字相乘是其次。 两种方法行不通,求根分解去尝试。 比和比例 两数相除也叫比,两比相等叫比例。 外项积等内项积,等积可化八比例。 分别交换内外项,统统都要叫更比。 同时交换内外项,便要称其为反比。 前后项和比后项,比值不变叫合比。 前后项差比后项,组成比例是分比。 两项和比两项差,比值相等合分比。 前项和比后项和,比值不变叫等比。 解比例 外项积等内项积,列出方程并解之。 求比值 由已知去求比值,多种途径可利用。 活用比例七性质,变量替换也走红。 消元也是好方法,殊途同归会变通。 正比例与反比例 商定变量成正比,积定变量成反比。 正比例与反比例 改变过程商肯定,两个变量成正比。 改变过程积肯定,两个变量成反比。 推断四数成比例 四数是否成比例,递增递减先排序。 两端积等中间积,四数肯定成比例。 推断四式成比例 四式是否成比例,生或降幂先排序。 两端积等中间积,四式便可成比例。 比例中项 成比例的四项中,外项相同会遇到。 有时内项会相同,比例中项少不了。 比例中项很重要,多种场合会遇到。 成比例的四项中,外项相同有不少。 有时内项会相同,比例中项出现了。 同数平方等异积,比例中项无处逃。 根式与无理式 表示方根代数式,都可称其为根式。 根式异于无理式,被开方式无限制。 被开方式有字母,才能称为无理式。 无理式都是根式,区分它们有标记。 被开方式有字母,又可称为无理式。 求定义域 求定义域有讲究,四项原则须留意。 负数不能开平方,分母为零无意义。 指是分数底正数,数零没有零次幂。 限制条件不唯一,满意多个不等式。 求定义域要过关,四项原则须留意。 负数不能开平方,分母为零无意义。 分数指数底正数,数零没有零次幂。 限制条件不唯一,不等式组求解集。 解一元一次不等式 先去分母再括号,移项合并同类项。 系数化“1”有讲究,同乘除负要变向。 先去分母再括号,移项别忘要变号。 同类各项去合并,系数化“1”留意了。 同乘除正无防碍,同乘除负也变号。 解一元一次不等式组 大于头来小于尾,大小不一中间找。 大大小小没有解,四种状况全来了。 同向取两边,异向取中间。 中间无元素,无解便出现。 幼儿园小鬼当家,(同小相对取较小) 敬老院以老为荣,(同大就要取较大) 军营里没老没少。(大小小大就是它) 大大小小解集空。(小小大大哪有哇) 解一元二次不等式 首先化成一般式,构造函数其次站。 判别式值若非负,曲线横轴有交点。 A正开口它向上,大于零则取两边。 代数式若小于零,解集交点数之间。 方程若无实数根,口上大零解为全。 小于零将没有解,开口向下正相反。 用平方差公式因式分解 异号两个平方项,因式分解有方法。 两底和乘两底差,分解结果就是它。 用完全平方公式因式分解 两平方项在两端,底积2倍在中部。 同正两底和平方,全负和方相反数。 分成两底差平方,方正倍积要为负。 两边为负中间正,底差平方相反数。 一平方又一平方,底积2倍在中路。 三正两底和平方,全负和方相反数。 分成两底差平方,两端为正倍积负。 两边若负中间正,底差平方相反数。 用公式法解一元二次方程 要用公式解方程,首先化成一般式。 调整系数随其后,使其成为最简比。 确定参数,计算方程判别式。 判别式值与零比,有无实根便得知。 有实根可套公式,没有实根要告之。 用常规配方法解一元二次方程 左未右已先分别,二系化“1”是其次。 一系折半再平方,两边同加没问题。 左边分解右合并,干脆开方去解题。 该种解法叫配方,解方程时多练习。 用间接配方法解一元二次方程 已知未知先分别,因式分解是其次。 调整系数等互反,和差积套恒等式。 完全平方等常数,间接配方显优势。 【注】恒等式 解一元二次方程 方程没有一次项,干脆开方最志向。 假如缺少常数项,因式分解没商议。 、相等都为零,等根是零不要忘。 、同时不为零,因式分解或配方, 也可干脆套公式,因题而异择良方。 正比例函数的鉴别 推断正比例函数,检验当分两步走。 一量表示另一量,是与否。 若有还要看取值,全体实数都要有。 正比例函数是否,辨别需分两步走。 一量表示另一量,有没有。 若有再去看取值,全体实数都须要。 区分正比例函数,衡量可分两步走。 一量表示另一量,是与否。 若有还要看取值,全体实数都要有。 正比例函数的图象与性质 正比函数图直线,经过和原点。 K正一三负二四,改变趋势记心间。 K正左低右边高,同大同小向爬山。 K负左高右边低,一大另小下山峦。 一次函数 一次函数图直线,经过点。 K正左低右边高,越走越高向爬山。 K负左高右边低,越来越低很明显。 K称斜率b截距,截距为零变正函。 反比例函数 反比函数双曲线,经过点。 K正一三负二四,两轴是它渐近线。 K正左高右边低,一三象限滑下山。 K负左低右边高,二四象限如爬山。 二次函数 二次方程零换,二次函数便出现。 全体实数定义域,图像叫做抛物线。 抛物线有对称轴,两边单调正相反。 A定开口及大小,线轴交点叫顶点。 顶点非高即最低。上低下高很惹眼。 假如要画抛物线,平移也可去描点, 提取配方定顶点,两条途径再选择。 列表描点后连线,平移规律记心间。 左加右减括号内,号外上加下要减。 二次方程零换,就得到二次函数。 图像叫做抛物线,定义域全体实数。 A定开口及大小,开口向上是正数。 肯定值大开口小,开口向下A负数。 抛物线有对称轴,增减特性可看图。 线轴交点叫顶点,顶点纵标最值出。 假如要画抛物线,描点平移两条路。 提取配方定顶点,平移描点皆成图。 列表描点后连线,三点大致定全图。 若要平移也不难,先画基础抛物线, 顶点移到新位置,开口大小随基础。 【注】基础抛物线 直线、射线与线段 直线射线与线段,形态相像有关联。 直线长短不确定,可向两方无限延。 射线仅有一端点,反向延长成直线。 线段定长两端点,双向延长变直线。 两点定线是共性,组成图形最常见。 角 一点动身两射线,组成图形叫做角。 共线反向是平角,平角之半叫直角。 平角两倍成周角,小于直角叫锐角。 直平之间是钝角,平周之间叫优角。 互余两角和直角,和是平角互补角。 一点动身两射线,组成图形叫做角。 平角反向且共线,平角之半叫直角。 平角两倍成周角,小于直角叫锐角。 钝角界于直平间,平周之间叫优角。 和为直角叫互余,互为补角和平角。 证等积或比例线段 等积或比例线段,多种途径可以证。 证等积要改等比,比照图形看特征。 共点共线线相交,平行截比把题证。 三点定型非常像,想法来把相像证。 图形明显不相像,等线段比替换证。 换后结论能成立,原来命题即得证。 实在不行用面积,射影角分线也成。 只要学习肯登攀,手脑并用无不胜。 解无理方程 一无一有各一边,两无也要放两边。 乘方根号无踪迹,方程可解无负担。 两无一有相对难,两次乘方也好办。 特别状况去换元,得解验根是必定。 解分式方程 先约后乘公分母,整式方程转化出。 特别状况可换元,去掉分母是出路。 求得解后要验根,原留增舍别模糊。 列方程解应用题 列方程解应用题,审设列解双检答。 审题弄清已未知,设元直间两方法。 列表画图造方程,解方程时守章法。 检验准且合题意,问求同一才作答。 两点间距离公式 同轴两点求距离,大减小数就为之。 与轴等距两个点,间距求法亦如此。 平面随意两个点,横纵标差先求值。 差方相加开平方,距离公式要牢记。 矩形的判定 随意一个四边形,三个直角成矩形; 对角线等互平分,四边形它是矩形。 已知平行四边形,一个直角叫矩形; 两对角线若相等,天经地义为矩形。 菱形的判定 随意一个四边形,四边相等成菱形; 四边形的对角线,垂直互分是菱形。 已知平行四边形,邻边相等叫菱形; 两对角线若垂直,顺理成章为菱形。 初中数学学问点总结:函数 初中数学学问点总结:函数 变量:因变量,自变量。 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 一次函数:若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。当B=0时,称Y是X的正比例函数。 一次函数的图象:把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,全部这些点组成的图形叫做该函数的图象。正比例函数Y=KX的图象是经过原点的一条直线。 在一次函数中,当K0,BO,则经234象限;当K0,B0时,则经124象限;当K0,B0时,则经134象限;当K0,B0时,则经123象限。当K0时,Y的值随X值的增大而增大,当X0时,Y的值随X值的增大而削减。 二空间与图形 A、图形的相识 1、点,线,面 点,线,面:图形是由点,线,面构成的。面与面相交得线,线与线相交得点。点动成线,线动成面,面动成体。 绽开与折叠:在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的全部侧棱长相等,棱柱的上下底面的形态相同,侧面的形态都是长方体。N棱柱就是底面图形有N条边的棱柱。 截一个几何体:用一个平面去截一个图形,截出的面叫做截面。 视图:主视图,左视图,俯视图。 多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。 弧、扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。圆可以分割成若干个扇形。 2、角 线:线段有两个端点。将线段向一个方向无限延长就形成了射线。射线只有一个端点。将线段的两端无限延长就形成了直线。直线没有端点。经过两点有且只有一条直线。 比较长短:两点之间的全部连线中,线段最短。两点之间线段的长度,叫做这两点之间的距离。 角的度量与表示:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。一度的1/60是一分,一分的1/60是一秒。 角的比较:角也可以看成是由一条射线围着他的端点旋转而成的。一条射线围着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边接着旋转,当他又和始边重合时,所成的角叫做周角。从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 平行:同一平面内,不相交的两条直线叫做平行线。经过直线外一点,有且只有一条直线与这条直线平行。假如两条直线都与第3条直线平行,那么这两条直线相互平行。 垂直:假如两条直线相交成直角,那么这两条直线相互垂直。相互垂直的两条直线的交点叫做垂足。平面内,过一点有且只有一条直线与已知直线垂直。 垂直平分线:垂直和平分一条线段的直线叫垂直平分线。 垂直平分线垂直平分的肯定是线段,不能是射线或直线,这依据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)肯定要把线段穿出2点。 垂直平分线定理: 性质定理:在垂直平分线上的点到该线段两端点的距离相等; 判定定理:到线段2端点距离相等的点在这线段的垂直平分线上 角平分线:把一个角平分的射线叫该角的角平分线。 定义中有几个要点要留意一下的,就是角的角平分线是一条射线,不是线段也不是直线,许多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点 性质定理:角平分线上的点到该角两边的距离相等 判定定理:到角的两边距离相等的点在该角的角平分线上 正方形:一组邻边相等的矩形是正方形 性质:正方形具有平行四边形、菱形、矩形的一切性质 判定:1、对角线相等的菱形2、邻边相等的矩形 第20页 共20页第 20 页 共 20 页第 20 页 共 20 页第 20 页 共 20 页第 20 页 共 20 页第 20 页 共 20 页第 20 页 共 20 页第 20 页 共 20 页第 20 页 共 20 页第 20 页 共 20 页第 20 页 共 20 页