欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高二数学向量的数量积013.docx

    • 资源ID:63201838       资源大小:20.98KB        全文页数:12页
    • 资源格式: DOCX        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高二数学向量的数量积013.docx

    高二数学向量的数量积013高二数学平面对量数量积的坐标表示26第9课时三、平面对量数量积的坐标表示、模、夹角教学目的:要求学生驾驭平面对量数量积的坐标表示驾驭向量垂直的坐标表示的充要条件,及平面内两点间的距离公式.能用所学学问解决有关综合问题.教学重点:平面对量数量积的坐标表示教学难点:平面对量数量积的坐标表示的综合运用授课类型:新授课教具:多媒体、实物投影仪教学过程:一、复习引入:1两个非零向量夹角的概念已知非零向量与,作,则()叫与的夹角.2平面对量数量积(内积)的定义:已知两个非零向量与,它们的夹角是,则数量|a|b|cos叫与的数量积,记作ab,即有ab=|a|b|cos,().并规定0与任何向量的数量积为0.3向量的数量积的几何意义:数量积ab等于a的长度与b在a方向上投影|b|cos的乘积.4两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量.1ea=ae=|a|cos;2abab=03当a与b同向时,ab=|a|b|;当a与b反向时,ab=|a|b|.特殊的aa=|a|2或4cos=;5|ab|a|b|5平面对量数量积的运算律交换律:ab=ba数乘结合律:(a)b=(ab)=a(b)安排律:(a+b)c=ac+bc二、讲解新课:平面两向量数量积的坐标表示已知两个非零向量,试用和的坐标表示.设是轴上的单位向量,是轴上的单位向量,那么,所以又,所以这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即2.平面内两点间的距离公式一、设,则或.(2)假如表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式)二、向量垂直的判定设,则三、两向量夹角的余弦()cos=四、讲解范例:五、设a=(5,7),b=(6,4),求ab及a、b间的夹角(精确到1o)例2已知A(1,2),B(2,3),C(2,5),试推断ABC的形态,并给出证明.例3已知a=(3,1),b=(1,2),求满意xa=9与xb=4的向量x.解:设x=(t,s),由x=(2,3)例4已知a(,),b(,),则a与b的夹角是多少?分析:为求a与b夹角,需先求ab及ab,再结合夹角的范围确定其值.解:由a(,),b(,)有ab(),a,b记a与b的夹角为,则又,评述:已知三角形函数值求角时,应注意角的范围的确定.例5如图,以原点和A(5,2)为顶点作等腰直角OAB,使B=90,求点B和向量的坐标.解:设B点坐标(x,y),则=(x,y),=(x5,y2)x(x5)+y(y2)=0即:x2+y25x2y=0又|=|x2+y2=(x5)2+(y2)2即:10x+4y=29由B点坐标或;=或例6在ABC中,=(2,3),=(1,k),且ABC的一个内角为直角,求k值.解:当A=90时,=0,2×1+3×k=0k=当B=90时,=0,=(12,k3)=(1,k3)2×(1)+3×(k3)=0k=当C=90时,=0,1+k(k3)=0k=六、课堂练习:1.若a=(-4,3),b=(5,6),则3|a|ab()A.23B.57C.63D.832.已知A(1,2),B(2,3),C(-2,5),则ABC为()A.直角三角形B.锐角三角形C.钝角三角形D.不等边三角形3.已知a=(4,3),向量b是垂直a的单位向量,则b等于()A.或?B.或C.或?D.或4.a=(2,3),b=(-2,4),则(a+b)(a-b)=.5.已知A(3,2),B(-1,-1),若点P(x,-)在线段AB的中垂线上,则x=.6.已知A(1,0),B(3,1),C(2,0),且a=,b=,则a与b的夹角为.七、小结(略)八、课后作业(略)九、板书设计(略)课后记:高二数学平面对量数量积的运算律25第8课时二、平面对量数量积的运算律教学目的:1.驾驭平面对量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;3.驾驭两个向量共线、垂直的几何推断,会证明两向量垂直,以及能解决一些简洁问题.教学重点:平面对量数量积及运算规律.教学难点:平面对量数量积的应用授课类型:新授课教具:多媒体、实物投影仪内容分析:启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生留意数量积性质的相关问题的特点,以娴熟地应用数量积的性质.?教学过程:一、复习引入:1两个非零向量夹角的概念已知非零向量与,作,则()叫与的夹角.2平面对量数量积(内积)的定义:已知两个非零向量与,它们的夹角是,则数量|a|b|cos叫与的数量积,记作ab,即有ab=|a|b|cos,().并规定0与任何向量的数量积为0.3“投影”的概念:作图定义:|b|cos叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当=0时投影为|b|;当=180时投影为|b|.4向量的数量积的几何意义:数量积ab等于a的长度与b在a方向上投影|b|cos的乘积.5两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量.1ea=ae=|a|cos;2abab=03当a与b同向时,ab=|a|b|;当a与b反向时,ab=|a|b|.特殊的aa=|a|2或4cos=;5|ab|a|b|二、讲解新课:平面对量数量积的运算律1交换律:ab=ba证:设a,b夹角为,则ab=|a|b|cos,ba=|b|a|cosab=ba2数乘结合律:(a)b=(ab)=a(b)证:若0,(a)b=|a|b|cos,(ab)=|a|b|cos,a(b)=|a|b|cos,若0,(a)b=|a|b|cos()=|a|b|(cos)=|a|b|cos,(ab)=|a|b|cos,a(b)=|a|b|cos()=|a|b|(cos)=|a|b|cos.3安排律:(a+b)c=ac+bc在平面内取一点O,作=a,=b,=c,a+b(即)在c方向上的投影等于a、b在c方向上的投影和,即|a+b|cos=|a|cos1+|b|cos2|c|a+b|cos=|c|a|cos1+|c|b|cos2,c(a+b)=ca+cb即:(a+b)c=ac+bc说明:(1)一般地,()()(2),0(3)有如下常用性质:,()()()三、讲解范例:例1已知a、b都是非零向量,且a+3b与7a5b垂直,a4b与7a2b垂直,求a与b的夹角.解:由(a+3b)(7a5b)=07a2+16ab15b2=0(a4b)(7a2b)=07a230ab+8b2=0两式相减:2ab=b2代入或得:a2=b2设a、b的夹角为,则cos=60例2求证:平行四边形两条对角线平方和等于四条边的平方和.解:如图:平行四边形ABCD中,=|2=而=,|2=|2+|2=2=例3四边形ABCD中,且,试问四边形ABCD是什么图形?分析:四边形的形态由边角关系确定,关键是由题设条件演化、推算该四边形的边角量.解:四边形ABCD是矩形,这是因为:一方面:0,(),()()即由于,同理有由可得,且即四边形ABCD两组对边分别相等.四边形ABCD是平行四边形另一方面,由,有(),而由平行四边形ABCD可得,代入上式得(2),即,也即ABBC.综上所述,四边形ABCD是矩形.评述:(1)在四边形中,是顺次首尾相接向量,则其和向量是零向量,即0,应留意这一隐含条件应用;(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系.四、课堂练习:1.下列叙述不正确的是()A.向量的数量积满意交换律B.向量的数量积满意安排律C.向量的数量积满意结合律D.ab是一个实数2.已知|a|=6,|b|=4,a与b的夹角为°,则(a+2b)(a-3b)等于()A.72B.-72C.36D.-363.|a|=3,|b|=4,向量a+b与a-b的位置关系为()A.平行B.垂直C.夹角为D.不平行也不垂直4.已知|a|=3,|b|=4,且a与b的夹角为150°,则(a+b).5.已知|a|=2,|b|=5,ab=-3,则|a+b|=_,|a-b|=.6.设|a|=3,|b|=5,且a+b与ab垂直,则.五、小结(略)六、课后作业(略)七、板书设计(略)八、课后记:高二数学平面对量数量积的物理背景及含义2.4.1平面对量的数量积的物理背景及其含义教学目的:1.驾驭平面对量的数量积及其几何意义;2.驾驭平面对量数量积的重要性质及运算律;3.了解用平面对量的数量积可以处理垂直的问题;4.驾驭向量垂直的条件.教学重点:平面对量的数量积定义教学难点:平面对量数量积的定义及运算律的理解和平面对量数量积的应用教学过程:一、复习引入:(1)两个非零向量夹角的概念:已知非零向量与,作,则()叫与的夹角.说明:(1)当时,与同向;(2)当时,与反向;(3)当时,与垂直,记;(4)留意在两向量的夹角定义,两向量必需是同起点的.范围0180(2)两向量共线的判定(3)练习1.若a=(2,3),b=(4,-1+y),且ab,则y=(C)A.6B.5C.7D.82.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为(B)?A.-3B.-1C.1D.3(4)力做的功:W=|F|s|cos,是F与s的夹角.二、讲解新课:1平面对量数量积(内积)的定义:已知两个非零向量与,它们的夹角是,则数量|a|b|cos叫与的数量积,记作ab,即有ab=|a|b|cos,().并规定0向量与任何向量的数量积为0.探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?2、两个向量的数量积与实数乘向量的积有什么区分?(1)两个向量的数量积是一个实数,不是向量,符号由cos的符号所确定.(2)两个向量的数量积称为内积,写成ab;今后要学到两个向量的外积a×b,而ab是两个向量的数量的积,书写时要严格区分.符号“”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a0,且ab=0,则b=0;但是在数量积中,若a0,且ab=0,不能推出b=0.因为其中cos有可能为0.(4)已知实数a、b、c(b0),则ab=bca=c.但是ab=bca=c如右图:ab=|a|b|cos=|b|OA|,bc=|b|c|cos=|b|OA|ab=bc但ac(5)在实数中,有(ab)c=a(bc),但是(ab)ca(bc)明显,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线.2“投影”的概念:作图定义:|b|cos叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当=0时投影为|b|;当=180时投影为|b|.3向量的数量积的几何意义:数量积ab等于a的长度与b在a方向上投影|b|cos的乘积.探究:两个向量的数量积的性质:设a、b为两个非零向量,1、abab=02、当a与b同向时,ab=|a|b|;当a与b反向时,ab=|a|b|.特殊的aa=|a|2或|ab|a|b|cos=探究:平面对量数量积的运算律1交换律:ab=ba证:设a,b夹角为,则ab=|a|b|cos,ba=|b|a|cosab=ba2数乘结合律:(a)b=(ab)=a(b)证:若0,(a)b=|a|b|cos,(ab)=|a|b|cos,a(b)=|a|b|cos,若0,(a)b=|a|b|cos()=|a|b|(cos)=|a|b|cos,(ab)=|a|b|cos,a(b)=|a|b|cos()=|a|b|(cos)=|a|b|cos.3安排律:(a+b)c=ac+bc在平面内取一点O,作=a,=b,=c,a+b(即)在c方向上的投影等于a、b在c方向上的投影和,即|a+b|cos=|a|cos1+|b|cos2|c|a+b|cos=|c|a|cos1+|c|b|cos2,c(a+b)=ca+cb即:(a+b)c=ac+bc说明:(1)一般地,()()(2),0(3)有如下常用性质:,()()三、讲解范例:例1证明:()例2已知|a|=12,|b|=9,求与的夹角。例3已知|a|=6,|b|=4,a与b的夹角为60o求:(1)(a+2b)(a-3b).(2)|a+b|与|a-b|.(利用)例4已知|a|=3,|b|=4,且a与b不共线,k为何值时,向量a+kb与a-kb相互垂直.四、课堂练习:1P106面1、2、3题。2下列叙述不正确的是()A.向量的数量积满意交换律B.向量的数量积满意安排律C.向量的数量积满意结合律D.ab是一个实数3|a|=3,|b|=4,向量a+b与a-b的位置关系为()A.平行B.垂直C.夹角为D.不平行也不垂直4已知|a|=8,|b|=10,|a+b|=16,求a与b的夹角.五、小结:1平面对量的数量积及其几何意义;2平面对量数量积的重要性质及运算律;3向量垂直的条件.六、作业:习案作业二十三。平面对量的数量积 课题:2.4平面对量的数量积(2)班级:姓名:学号:第学习小组【学习目标】1、驾驭平面对量数量积的坐标表示;2、驾驭向量垂直的坐标表示的等价条件。【课前预习】1、(1)已知向量和的夹角是,|=2,|=1,则(+)2=,|+|=。(2)已知:|=2,|=5,=3,则|+|=,|=。(3)已知|=1,|=2,且()与垂直,则与的夹角为2、设轴上的单位向量,轴上的单位向量,则=,=,=,=,若=,=,则=+.=+。3、推导坐标公式:=。4、(1)=,则|=_;,则|=。(2)=;(3);(4)/。5、已知=,=,则|=,|=,=,=;=。 【课堂研讨】例1、已知=,=,求(3)(2),与的夹角。 例2、已知|=1,|=,+=,试求:(1)|(2)+与的夹角 例3、在中,设=,=,且是直角三角形,求的值。 【学后反思】1、平面对量数量积的概念及其几何意义;2、数量积的性质及其性质的简洁应用。 课题:2.4平面对量的数量积检测案(2)班级:姓名:学号:第学习小组【课堂检测】1、求下列各组中两个向量与的夹角:(1)=,=(2)=,=2、设,求证:是直角三角形。3、若=,=,当为何值时:(1)(2)(3)与的夹角为锐角 【课后巩固】1、设,是随意的非零向量,且相互不共线,则下列命题正确的有:()()=|()()不与垂直(3+4)(34)=9|216|2若为非零向量,=,且,则()2、若=,=且与的夹角为钝角,则的取值范围是。3、已知=,则与垂直的单位向量的坐标为。4、已知若=,=,则+与垂直的条件是5、的三个顶点的坐标分别为,推断三角形的形态。 6、已知向量=,|=2,求满意下列条件的的坐标。(1)(2) 7、已知向量=,=。(1)求|+|和|;(2)为何值时,向量+与3垂直?(3)为何值时,向量+与3平行? 8、已知向量,其中分别为直角坐标系内轴与轴正方向上的单位向量。(1)若能构成三角形,求实数应满意的条件;(2)是直角三角形,求实数的值。 课题:2.4平面对量的数量积(2)班级:姓名:学号:第学习小组【学习目标】3、驾驭平面对量数量积的坐标表示;4、驾驭向量垂直的坐标表示的等价条件。【课前预习】1、(1)已知向量和的夹角是,|=2,|=1,则(+)2=,|+|=。(2)已知:|=2,|=5,=3,则|+|=,|=。(3)已知|=1,|=2,且()与垂直,则与的夹角为2、设轴上的单位向量,轴上的单位向量,则=,=,=,=,若=,=,则=+.=+。3、推导坐标公式:=。4、(1)=,则|=_;,则|=。(2)=;(3);(4)/。5、已知=,=,则|=,|=,=,=;=。 【课堂研讨】例1、已知=,=,求(3)(2),与的夹角。 例2、已知|=1,|=,+=,试求:(1)|(2)+与的夹角 例3、在中,设=,=,且是直角三角形,求的值。 【学后反思】1、平面对量数量积的概念及其几何意义;2、数量积的性质及其性质的简洁应用。 课题:2.4平面对量的数量积检测案(2)班级:姓名:学号:第学习小组【课堂检测】1、求下列各组中两个向量与的夹角:(1)=,=(2)=,= 2、设,求证:是直角三角形。3、若=,=,当为何值时:(1)(2)(3)与的夹角为锐角 【课后巩固】1、设,是随意的非零向量,且相互不共线,则下列命题正确的有:()()=|()()不与垂直(3+4)(34)=9|216|2若为非零向量,=,且,则()2、若=,=且与的夹角为钝角,则的取值范围是。3、已知=,则与垂直的单位向量的坐标为。4、已知若=,=,则+与垂直的条件是5、的三个顶点的坐标分别为,推断三角形的形态。 6、已知向量=,|=2,求满意下列条件的的坐标。(1)(2) 7、已知向量=,=。(1)求|+|和|;(2)为何值时,向量+与3垂直?(3)为何值时,向量+与3平行? 8、已知向量,其中分别为直角坐标系内轴与轴正方向上的单位向量。(1)若能构成三角形,求实数应满意的条件;(2)是直角三角形,求实数的值。 第12页 共12页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页

    注意事项

    本文(高二数学向量的数量积013.docx)为本站会员(l***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开