欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    算法设计与分析复习题目及答案详解.docx

    • 资源ID:63312143       资源大小:24.53KB        全文页数:26页
    • 资源格式: DOCX        下载积分:9.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    算法设计与分析复习题目及答案详解.docx

    算法设计与分析复习题目及答案详解分治法 1、二分搜寻算法是利用( 分治策略)实现的算法。9. 实现循环赛日程表利用的算法是(分治策略 ) 27、Strassen矩阵乘法是利用(分治策略 )实现的算法。34实现合并排序利用的算法是(分治策略 )。实现大整数的乘法是利用的算法( 分治策略 )。17实现棋盘覆盖算法利用的算法是(分治法 )。29、运用分治法求解不须要满意的条件是(子问题必需是一样的 )。不行以运用分治法求解的是(0/1背包问题 )。 动态规划 下列不是动态规划算法基本步骤的是( 构造最优解 ) 下列是动态规划算法基本要素的是(子问题重叠性质 )。 下列算法中通常以自底向上的方式求解最优解的是(动态规划法 ) 备忘录方法是那种算法的变形。( 动态规划法 ) 最长公共子序列算法利用的算法是( 动态规划法 )。矩阵连乘问题的算法可由(动态规划算法B)设计实现。实现最大子段和利用的算法是(  动态规划法   )。 贪心算法 能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动支配问题, 不能解决的问题:N皇后问题,0/1背包问题 是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。 回溯法 回溯法解旅行售货员问题时的解空间树是( 排列树 )。 剪枝函数是回溯法中为避开无效搜寻实行的策略 回溯法的效率不依靠于下列哪些因素( 确定解空间的时间) 分支限界法 最大效益优先是( 分支界限法 )的一搜寻方式。分支限界法解最大团问题时,活结点表的组织形式是( 最大堆 )。分支限界法解旅行售货员问题时,活结点表的组织形式是( 最小堆 ) 优先队列式分支限界法选取扩展结点的原则是( 结点的优先级 ) 在对问题的解空间树进行搜寻的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法 ). 从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法 )之外都是最常见的方式. (1)队列式(FIFO)分支限界法:根据队列先进先出(FIFO)原则选取下一个节点为扩展节点。 (2)优先队列式分支限界法:根据优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。 (最优子结构性质)是贪心算法与动态规划算法的共同点。 贪心算法与动态规划算法的主要区分是( 贪心选择性质   )。 回溯算法和分支限界法的问题的解空间树不会是( 无序树 ). 14哈弗曼编码的贪心算法所需的计算时间为(   B     )。A、O(n2n) B、O(nlogn) C、O(2n) D、O(n) 21、下面关于NP问题说法正确的是(B ) A NP问题都是不行能解决的问题 B P类问题包含在NP类问题中 C NP完全问题是P类问题的子集 D NP类问题包含在P类问题中 40、背包问题的贪心算法所需的计算时间为(  B      ) A、O(n2n)     B、O(nlogn)    C、O(2n)      D、O(n) 420-1背包问题的回溯算法所需的计算时间为(  A      ) A、O(n2n) B、O(nlogn) C、O(2n) D、O(n) . 47.背包问题的贪心算法所需的计算时间为(   B     )。A、O(n2n) B、O(nlogn) C、O(2n) D、O(n) 53采纳贪心算法的最优装载问题的主要计算量在于将集装箱依其重量从小到大排序,故算法的时间困难度为 ( B ) 。A、O(n2n) B、O(nlogn) C、O(2n) D、O(n) 56、算法是由若干条指令组成的有穷序列,而且满意以下性质( D ) (1) 输入:有0个或多个输入 (2) 输出:至少有一个输出 (3) 确定性:指令清楚,无歧义 (4) 有限性:指令执行次数有限,而且执行时间有限 A (1)(2)(3) B(1)(2)(4) C(1)(3)(4) D (1) (2)(3)(4) 57、函数32n+10nlogn的渐进表达式是( B ). A. 2n B. 32n C. nlogn D. 10nlogn 59、用动态规划算法解决最大字段和问题,其时间困难性为( B ). A.logn B.n C.n2 D.nlogn 61、设f(N),g(N)是定义在正数集上的正函数,假如存在正的常数C和自然数N0,使得当NN0时有f(N)Cg(N),则称函数f(N)当N充分大时有下界g(N),记作 f(N)(g(N),即f(N)的阶( A )g(N)的阶. A.不高于 B.不低于C.等价于 D.靠近 二、 填空题 2、程序是 算法  用某种程序设计语言的详细实现。3、算法的“确定性”指的是组成算法的每条 指令 是清楚的,无歧义的。6、算法是指解决问题的 一种方法 或 一个过程 。7、从分治法的一般设计模式可以看出,用它设计出的程序一般是 递归算法 。11、计算一个算法时间困难度通常可以计算 循环次数 、 基本操作的频率 或计算步。14、解决0/1背包问题可以运用动态规划、回溯法和分支限界法,其中不须要排序的是 动态规划 ,须要排序的是 回溯法 ,分支限界法 。15、运用回溯法进行状态空间树裁剪分支时一般有两个标准:约束条件和目标函数的界,N皇后问题和0/1背包问题正好是两种不同的类型,其中同时运用约束条件和目标函数的界进行裁剪的是 0/1背包问题 ,只运用约束条件进行裁剪的是 N皇后问题 。 30.回溯法是一种既带有 系统性 又带有 跳动性 的搜寻算法。 33回溯法搜寻解空间树时,常用的两种剪枝函数为 约束函数 和 限界函数 。 34.任何可用计算机求解的问题所需的时间都与其 规模 有关。35.快速排序算法的性能取决于 划分的对称性 。36. Prim算法利用 贪心 策略求解 最小生成树 问题,其时间困难度是 O(n2) 。37. 图的m着色问题可用 回溯 法求解,其解空间树中叶子结点个数是 mn ,解空间树中每个内结点的孩子数是 m 。 4.若序列X=B,C,A,D,B,C,D,Y=A,C,B,A,B,D,C,D,请给出序列X和Y的一个最长公共子序列 BABCD或CABCD或CADCD。 5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含一个(最优)解 8.0-1背包问题的回溯算法所需的计算时间为_o(n*2n)_,用动态规划算法所需的计算时间为_o(minnc,2n_。二、综合题(50分) 1.写出设计动态规划算法的主要步骤。问题具有最优子结构性质;构造最优值的递归关系表达式;3最优值的算法描述;构造最优解; 2. 流水作业调度问题的johnson算法的思想。令N1=i|ai<bi,N2=i|ai>=bi;将N1中作业按ai的非减序排序得到N1,将N2中作业按bi的非增序排序得到N2;N1中作业接N2中作业就构成了满意Johnson法则的最优调度。3. 若n=4,在机器M1和M2上加工作业i所需的时间分别为ai和bi,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。步骤为:N1=1,3,N2=2,4; N1=1,3, N2=4,2; 最优值为:38 4. 运用回溯法解0/1背包问题:n=3,C=9,V=6,10,3,W=3,4,4,其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根动身,左1右0),并画出其解空间树,计算其最优值及最优解。解空间为(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1), (1,1,0),(1,1,1)。解空间树为: A B C F E D G K J I H O N M L 1 1 1 0 0 0 0 1 0 1 1 0 1 0 该问题的最优值为:16 最优解为:(1,1,0) 5. 设S=X1,X2,···,Xn是严格递增的有序集,利用二叉树的结点来存储S中的元素,在表示S的二叉搜寻树中搜寻一个元素X,返回的结果有两种情形,(1)在二叉搜寻树的内结点中找到X=Xi,其概率为bi。(2)在二叉搜寻树的叶结点中确定X(Xi,Xi+1),其概率为ai。在表示S的二叉搜寻树T中,设存储元素Xi的结点深度为Ci;叶结点(Xi,Xi+1)的结点深度为di,则二叉搜寻树T的平均路长p为多少?假设二叉搜寻树Tij=Xi,Xi+1,···,Xj最优值为mij,Wij= ai-1+bi+···+bj+aj,则mij(1<=i<=j<=n)递归关系表达式为什么? 二叉树T的平均路长P=+ mij=Wij+minmik+mk+1j (1<=i<=j<=n,mii-1=0) mij=0 (i>j) 6. 描述0-1背包问题。已知一个背包的容量为C,有n件物品,物品i的重量为Wi,价值为Vi,求应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。三、简答题(30分) 1.流水作业调度中,已知有n个作业,机器M1和M2上加工作业i所需的时间分别为ai和bi,请写出流水作业调度问题的johnson法则中对ai和bi的排序算法。(函数名可写为sort(s,n)) 2.最优二叉搜寻树问题的动态规划算法(设函数名binarysearchtree)) 1. void sort(flowjope s,int n) int i,k,j,l; for(i=1;i<=n-1;i+)/-选择排序 k=i; while(k<=nsk.tag!=0) k+; if(k>n) break;/-没有ai,跳出 else for(j=k+1;j<=n;j+) if(sj.tag=0) if(sk.a>sj.a) k=j; swap(si.index,sk.index); swap(si.tag,sk.tag); l=i;/-登记当前第一个bi的下标 for(i=l;i<=n-1;i+) k=i; for(j=k+1;j<=n;j+) if(sk.b<sj.b) k=j; swap(si.index,sk.index); /-只移动index和tag swap(si.tag,sk.tag); 2. void binarysearchtree(int a,int b,int n,int *m,int *s,int *w) int i,j,k,t,l; for(i=1;i<=n+1;i+) wii-1=ai-1; mii-1=0; for(l=0;l<=n-1;l+)/-l是下标j-i的差 for(i=1;i<=n-l;i+) j=i+l; wij=wij-1+aj+bj; mij=mii-1+mi+1j+wij; sij=i; for(k=i+1;k<=j;k+) t=mik-1+mk+1j+wij; if(t<mij) mij=t; sij=k; 一、 填空题(本题15分,每小题1分) 1、 算法就是一组有穷的 规则 ,它们规定了解决某一特定类型问题的 一系列运算 2、 在进行问题的计算困难性分析之前,首先必需建立求解问题所用的计算模型。3个基本计算模型是 随机存取机RAM 、 随机存取存储程序机RASP 、 图灵机 。3、 算法的困难性是 算法效率 的度量,是评价算法优劣的重要依据。4、 计算机的资源最重要的是 时间 和 空间 资源 5、 f(n)= 6×2n+n2,f(n)的渐进性态f(n)= O(  2n   ) 6、 贪心算法总是做出在当前看来 最好 的选择。也就是说贪心算法并不从整体最优考虑,它所做出的选择只是在某种意义上的局部最优结构 二、简答题(本题25分,每小题5分) 1、 简洁描述分治法的基本思想。2、 简述动态规划方法所运用的最优化原理。3、 何谓最优子结构性质? 4、 简洁描述回溯法基本思想。5、 何谓P、NP、NPC问题 三、算法填空(本题20分,每小题5分) 1、n后问题回溯算法 (1)用二维数组ANN存储皇后位置,若第i行第j列放有皇后,则Aij为非0值,否则值为0。(2)分别用一维数组MN、L2*N-1、R2*N-1表示竖列、左斜线、右斜线是否放有棋子,有则值为1,否则值为0。for(j=0;j<N;j+) if( 1 ) /*平安检查*/ Aij=i+1; /*放皇后*/ 2 ; if(i=N-1) 输出结果; else 3 ;; /*摸索下一行*/ 4 ; /*去皇后*/ 5 ;; 2、数塔问题。有形如下图所示的数塔,从顶部动身,在每一结点可以选择向左走或是向右走,一起走究竟层,要求找出一条路径,使路径上的值最大。for(r=n-2;r>=0;r-) /自底向上递归计算 for(c=0; 1 ;c+) if( tr+1c>tr+1c+1) 2 ; else 3 ; 3、Hanoi算法 Hanoi(n,a,b,c) if (n=1) 1 ; else 2 ; 3 ; Hanoi(n-1,b, a, c); 4、Dijkstra算法求单源最短路径 du:s到u的距离 pu:记录前一节点信息 Init-single-source(G,s) for each vertex vVG do dv=; 1 ds=0 Relax(u,v,w) if dv>du+w(u,v) then dv=du+wu,v; 2 dijkstra(G,w,s) 1. Init-single-source(G,s) 2. S= 3. Q=VG 4.while Q<> do u=min(Q) S=Su for each vertex 3 do 4 四、算法理解题(本题10分) 依据优先队列式分支限界法,求下图中从v1点到v9点的单源最短路径,请画出求得最优解的解空间树。要求中间被舍弃的结点用×标记,获得中间解的结点用单圆圈框起,最优解用双圆圈框起。五、算法理解题(本题5分) 设有n=2k个运动员要进行循环赛,现设计一个满意以下要求的竞赛日程表: 每个选手必需与其他n-1名选手竞赛各一次; 每个选手一天至多只能赛一次; 循环赛要在最短时间内完成。(1)假如n=2k,循环赛最少须要进行几天; (2)当n=23=8时,请画出循环赛日程表。六、算法设计题(本题15分) 分别用贪心算法、动态规划法、回溯法设计0-1背包问题。要求:说明所运用的算法策略;写出算法实现的主要步骤;分析算法的时间。七、算法设计题(本题10分) 通过键盘输入一个高精度的正整数n(n的有效位数240),去掉其中随意s个数字后,剩下的数字按原左右次序将组成一个新的正整数。编程对给定的n 和s,找寻一种方案,使得剩下的数字组成的新数最小。 178543 S=4 13 二、简答题(本题25分,每小题5分) 6、 分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题相互独立且与原问题相同;对这k个子问题分别求解。假如子问题的规模仍旧不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很简单求出其解为止;将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。 7、 “最优化原理”用数学化的语言来描述:假设为了解决某一优化问题,须要依次作出n个决策D1,D2,Dn,如若这个决策序列是最优的,对于任何一个整数k,1 < k < n,不论前面k个决策是怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即以后的决策Dk+1,Dk+2,Dn也是最优的。8、 某个问题的最优解包含着其子问题的最优解。这种性质称为最优子结构性质。9、 回溯法的基本思想是在一棵含有问题全部可能解的状态空间树上进行深度优先搜寻,解为叶子结点。搜寻过程中,每到达一个结点时,则推断该结点为根的子树是否含有问题的解,假如可以确定该子树中不含有问题的解,则放弃对该子树的搜寻,退回到上层父结点,接着下一步深度优先搜寻过程。在回溯法中,并不是先构造出整棵状态空间树,再进行搜寻,而是在搜寻过程,逐步构造出状态空间树,即边搜寻,边构造。10、 P(Polynomial问题):也即是多项式困难程度的问题。NP就是Non-deterministic Polynomial的问题,也即是多项式困难程度的非确定性问题。NPC(NP Complete)问题,这种问题只有把解域里面的全部可能都穷举了之后才能得出答案,这样的问题是NP里面最难的问题,这种问题就是NPC问题。三、算法填空(本题20分,每小题5分) 1、n后问题回溯算法 (1) !Mj!Li+j!Ri-j+N (2) Mj=Li+j=Ri-j+N=1; (3) try(i+1,M,L,R,A) (4) Aij=0 (5) Mj=Li+j=Ri-j+N=0 2、数塔问题。(1)c<=r (2)trc+=tr+1c (3)trc+=tr+1c+1 3、Hanoi算法 (1)move(a,c) (2)Hanoi(n-1, a, c , b) (3)Move(a,c) 4、(1)pv=NIL (2)pv=u (3) vadju (4)Relax(u,v,w) 四、算法理解题(本题10分) 1 2 3 4 5 6 7 8 2 1 4 3 6 5 8 7 3 4 1 2 7 8 5 6 4 3 2 1 8 7 6 5 5 6 7 8 1 2 3 4 6 5 8 7 2 1 4 3 7 8 5 6 3 4 1 2 8 7 6 5 4 3 2 1 五、(1)8天(2分); (2)当n=23=8时,循环赛日程表(3分)。六、算法设计题(本题15分) (1)贪心算法 O(nlog(n) Ø 首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包。依此策略始终地进行下去,直到背包装满为止。Ø 详细算法可描述如下: void Knapsack(int n,float M,float v,float w,float x) Sort(n,v,w); int i; for (i=1;i<=n;i+) xi=0; float c=M; for (i=1;i<=n;i+) if (wi>c) break; xi=1; c-=wi; if (i<=n) xi=c/wi; (2)动态规划法 O(nc) m(i,j)是背包涵量为j,可选择物品为i,i+1,n时0-1背包问题的最优值。由0-1背包问题的最优子结构性质,可以建立计算m(i,j)的递归式如下。 void KnapSack(int v,int w,int c,int n,int m11) int jMax=min(wn-1,c); for (j=0;j<=jMax;j+) /*m(n,j)=0 0=<j<wn*/ mnj=0; for (j=wn;j<=c;j+) /*m(n,j)=vn j>=wn*/ mnj=vn; for (i=n-1;i>1;i-) int jMax=min(wi-1,c); for (j=0;j<=jMax;j+) /*m(i,j)=m(i+1,j) 0=<j<wi*/ mij=mi+1j; for (j=wi;j<=c;j+)/*m(n,j)=vn j>=wn*/ mij=max(mi+1j,mi+1j-wi+vi); m1c=m2c; if(c>=w1) m1c=max(m1c,m2c-w1+v1); (3)回溯法 O(2n) cw:当前重量 cp:当前价值 bestp:当前最优值 void backtrack(int i) /回溯法  i初值1     if(i > n) /到达叶结点 bestp = cp;              return;                     if(cw + wi <= c) /搜寻左子树              cw += wi;   cp += pi;               backtrack(i+1);               cw -= wi;             cp -= pi;                       if(Bound(i+1)>bestp) /搜寻右子树            backtrack(i+1);         七、算法设计题(本题10分) 为了尽可能地靠近目标,我们选取的贪心策略为:每一步总是选择一个使剩下的数最小的数字删去,即按高位到低位的依次搜寻,若各位数字递增,则删除最终一个数字,否则删除第一个递减区间的首字符。然后回到串首,按上述规则再删除下一个数字。重复以上过程s次,剩下的数字串便是问题的解了。 详细算法如下: 输入s, n; while( s > 0 ) i=1; /从串首起先找 while (i < length(n) (ni<ni+1) i+; delete(n,i,1); /删除字符串n的第i个字符 s-; while (length(n)>1) (n1=0) delete(n,1,1); /删去串首可能产生的无用零 输出n; 三、算法填空 1.背包问题的贪心算法 void Knapsack(int n,float M,float v,float w,float x) Sort(n,v,w); int i; for (i=1;i<=n;i+) xi=0; float c=M; for (i=1;i<=n;i+) if (wi>c) break; xi=1; c - =wi; if (i<=n) xi=c/wi; 2.最大子段和: 动态规划算法 int MaxSum(int n, int a) int sum=0, b=0; /sum存储当前最大的bj, b存储bj for(int j=1; j<=n; j+) if (b>0) b+= aj ; else b=ai; ; /一旦某个区段和为负,则从下一个位置累和 if(b>sum) sum=b; return sum; 3.快速排序 template<class Type> void QuickSort (Type a, int p, int r) if (p<r) int q=Partition(a,p,r); QuickSort (a,p,q-1); /对左半段排序 QuickSort (a,q+1,r); /对右半段排序 4.排列问题 Template <class Type> void perm(Type list, int k, int m ) /产生listk:m的全部排列 if(k=m) /只剩下一个元素 for (int i=0;i<=m;i+) cout<<listi; cout<<endl; else /还有多个元素待排列,递归产生排列 for (int i=k; i<=m; i+) swap(listk,listi); perm(list,k+1;m); swap(listk,listi); 5.给定已按升序排好序的n个元素a0:n-1,现要在这n个元素中找出一特定元素x。 据此简单设计出二分搜寻算法: template<class Type> int BinarySearch(Type a, const Type x, int l, int r) while (l<=r ) int m = (l+r)/2); if (x = am) return m; if (x < am) r = m-1; else l = m+1; return -1; 6、合并排序描述如下: template<class Type> void Mergesort(Type a , int left, int right) if (left<right) int i=( left+right)/2; Mergesort(a, left, i ); Mergesort(a, i+1, right); Merge(a,b, left,i,right);/合并到数组b Copy(a,b, left,right ); /复制到数组a 7、以下是计算xm的值的过程 int power ( x, m ) /计算xm的值并返回。 y=( 1 );i=m; While(i- - >0) y=y*x; (return y)  四、问答题 1.用计算机求解问题的步骤: 1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制 2. 算法定义: 算法是指在解决问题时,根据某种机械步骤肯定可以得到问题结果的处理过程 3.算法的三要素 1、操作2、限制结构3、数据结构 13. 分治法与动态规划法的相同点是: 将待求解的问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。两者的不同点是:适合于用动态规划法求解的问题,经分解得到的子问题往往不是相互独立的。而用分治法求解的问题,经分解得到的子问题往往是相互独立的。 回溯法中常见的两类典型的解空间树是子集树和排列树。 22.请叙述动态规划算法与贪心算法的异同。共同点:都须要最优子结构性质,都用来求有优化问题。不同点: 动态规划:每一步作一个选择依靠于子问题的解。 贪心方法:每一步作一个选择不依靠于子问题的解。 动态规划方法的条件:子问题的重叠性质。 可用贪心方法的条件:最优子结构性质;贪心选择性质。 动态规划:自底向上求解;贪心方法: 自顶向下求解。可用贪心法时,动态规划方法可能不适用;可用动态规划方法时,贪心法可能不适用。23. 请说明动态规划方法为什么须要最优子结构性质。答:最优子结构性质是指大问题的最优解包含子问题的最优解。动态规划方法是自底向上计算各个子问题的最优解,即先计算子问题的最优解,然后再利用子问题的最优解构造大问题的最优解,因此须要最优子结构. 24. 请说明: (1)优先队列可用什么数据结构实现? (2)优先队列插入算法基本思想? (3)优先队列插入算法时间困难度? 答:(1)堆。 (2)在小根堆中,将元素x插入到堆的末尾, 然后将元素x的关键字与其双亲的关键字比较, 若元素x的关键字小于其双亲的关键字, 则将元素x与其双亲交换,然后再将元素x与其新双亲的关键字相比,直到元素x的关键字大于双亲的关键字,或元素x到根为止。 (3)O( log n) 26. 在算法困难性分析中,O、这三个记号的意义是什么?在忽视常数因子的状况 下,O、分别供应了算法运行时间的什么界? 答: 假如存在两个正常数c和N0,对于全部的NN0,有|f(N)|C|g(N)|,则记作:f(N)= O(g(N)。这时我们说f(N)的阶不高于g(N)的阶。若存在两个正常数C和自然数N0,使得当N N0时有|f(N)|C|g(N)|,记为f(N)=(g(N)。这时我们说f(N)的阶不低于g(N)的阶。假如存在正常数c1,c2和n0,对于全部的nn0,有c1|g(N)| |f(N)| c2|g(N)| 则记作 f(N)= (g,(N) O、分别供应了算法运行时间的上界、下界、平均 五、算法设计与分析题 1用动态规划策略求解最长公共子序列问题: (1)给出计算最优值的递归方程。 (2)给定两个序列X=B,C,D,A,Y=A,B,C,B,请采纳动态规划策略求出其最长公共子序列,要求给出过程。 答:1 (2) 0 0 0 0 0 0 1 1 1 0 0 1 2 2 0 0 1 2 2 0 1 1 2 2 最长公共子序列: 2对下列各组函数f (n) 和g (n),确定f (n) = O (g (n) 或f (n) =(g (n)或f(n) =(g(n),并简要说明理由。(1) f(n)=2n; g(n)=n! (2) f(n)=; g (n)=log n2 (3) f(n)=100; g(n)=log100 (4) f(n)=n3; g(n)= 3n (5) f(n)=3n; g(n)=2n 答: (1) f(n) = O(g(n) 因为g(n)的阶比f(n)的阶高。(2) f(n) = (g(n) 因为g(n)的阶比f(n)的阶低。(3) f(n) = (g(n) 因为g(n)与f(n)同阶。(4) f(n) = O(g(n) 因为g(n)的阶比f(n)的阶高。(5) f(n) = (g(n) 因为g(n)的阶比f(n)的阶低。3对下图所示的连通网络G,用克鲁斯卡尔(Kruskal)算法求G的最小生成树T,请写出在算法执行过程中,依次加入T的边集TE中的边。说明该算法的贪心策略和算法的基本思想,并简要分析算法的时间困难度。1 2 3 4 5 6 18 11 17 15 19 21 26 6 7 9 答: TE=(3,4), (2,3),(1,5),(4,6)(4,5) 贪心策略是每次都在连接两个不同连通重量的边中选权值最小的边。基本思想:首先将图中全部顶点都放到生成树中,然后每次都在连接两个不同连通重量的边中选权值最小的边,将其放入生成树中,直到生成树中有n-1条边。时间困难度为:O(eloge) 4. 请用分治策略设计递归的归并排序算法,并分析其时间困难性(要求:分别给出divide、conquer、combine这三个阶段所花的时间,并在此基础上列出递归方程,最终用套用公式法求出其解的渐进阶)。答 : Template <class Type> void MergeSort (Type a , int left, int right) if (left<right) int i=(left+right)/2; MergeSort(a, left, i); MergeSort(a, i+1, right); Merge(a, b, left, right

    注意事项

    本文(算法设计与分析复习题目及答案详解.docx)为本站会员(l***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开