力学第六章相对论.ppt
物理学的大厦已经基本建成,物理学理论上物理学的大厦已经基本建成,物理学理论上物理学的大厦已经基本建成,物理学理论上物理学的大厦已经基本建成,物理学理论上的一些基本的、原则的问题都已经得到解决,接的一些基本的、原则的问题都已经得到解决,接的一些基本的、原则的问题都已经得到解决,接的一些基本的、原则的问题都已经得到解决,接近于采取最终稳定的形式。今后的任务只是进一近于采取最终稳定的形式。今后的任务只是进一近于采取最终稳定的形式。今后的任务只是进一近于采取最终稳定的形式。今后的任务只是进一步精确化的问题。也许,在某个角落还有一粒尘步精确化的问题。也许,在某个角落还有一粒尘步精确化的问题。也许,在某个角落还有一粒尘步精确化的问题。也许,在某个角落还有一粒尘屑或小气泡,可以对它们进行研究和分类。屑或小气泡,可以对它们进行研究和分类。屑或小气泡,可以对它们进行研究和分类。屑或小气泡,可以对它们进行研究和分类。十九世纪末,以经典力学、电磁场理论和经典十九世纪末,以经典力学、电磁场理论和经典统计力学为主要支柱,经典物理学达到了完整、统计力学为主要支柱,经典物理学达到了完整、系统和成熟的阶段。不少物理学家认为:系统和成熟的阶段。不少物理学家认为:1 1.1.1.1.迈克尔孙迈克尔孙迈克尔孙迈克尔孙-莫雷实验得到莫雷实验得到莫雷实验得到莫雷实验得到以太漂移的以太漂移的以太漂移的以太漂移的“零结果零结果零结果零结果”,宣,宣,宣,宣告寻找宇宙绝对参考系的企告寻找宇宙绝对参考系的企告寻找宇宙绝对参考系的企告寻找宇宙绝对参考系的企图失败了,经典物理学所赖图失败了,经典物理学所赖图失败了,经典物理学所赖图失败了,经典物理学所赖以建立的绝对时空观受到严以建立的绝对时空观受到严以建立的绝对时空观受到严以建立的绝对时空观受到严重挑战;重挑战;重挑战;重挑战;2.2.2.2.气体比热问题上经典理气体比热问题上经典理气体比热问题上经典理气体比热问题上经典理论能量均分原理失败。论能量均分原理失败。论能量均分原理失败。论能量均分原理失败。十九与二十世纪之交时,晴朗的物十九与二十世纪之交时,晴朗的物理学天空中出现了两朵乌云理学天空中出现了两朵乌云:2这两朵乌云终于降下了二十世纪物理学革命的暴风雨这两朵乌云终于降下了二十世纪物理学革命的暴风雨相对论诞生相对论诞生量子论诞生量子论诞生相对论和量子论是现代科学与文明的两大基石相对论和量子论是现代科学与文明的两大基石爱因斯坦爱因斯坦(1905)普朗克普朗克(1900)玻尔玻尔(1912)3第六章第六章 狭义相对论狭义相对论(Special Relativity)4爱因斯坦爱因斯坦:Einstein:Einstein现代时空的创始人现代时空的创始人二十世纪的哥白尼二十世纪的哥白尼518791879年年3 3月月1414日,爱因斯坦出生在德国乌尔姆市班霍夫街日,爱因斯坦出生在德国乌尔姆市班霍夫街135135号。号。父母都是犹太人。父母都是犹太人。18801880年爱因斯坦一家迁居慕尼黑。年爱因斯坦一家迁居慕尼黑。18841884年爱因斯坦对袖珍罗盘着年爱因斯坦对袖珍罗盘着迷。进天主教小学读书。迷。进天主教小学读书。18851885年爱因斯坦开始学小提琴。年爱因斯坦开始学小提琴。18861886年年爱因斯坦在慕尼黑公立学校读书。为了遵守宗教指示的法定要求,爱因斯坦在慕尼黑公立学校读书。为了遵守宗教指示的法定要求,在家里学习犹太教的教规。在家里学习犹太教的教规。18921892年开始读康德著作。年开始读康德著作。18941894年全家迁往意大利米兰。年全家迁往意大利米兰。18951895年自学完微积分。中学没毕业就到意大利与家人团聚。放弃年自学完微积分。中学没毕业就到意大利与家人团聚。放弃德国国籍。投考苏黎世瑞士联邦工业大学,未录取。德国国籍。投考苏黎世瑞士联邦工业大学,未录取。1010月转学到月转学到瑞士阿劳州立中学。写了第一篇科学论文。瑞士阿劳州立中学。写了第一篇科学论文。18961896年获阿劳中学毕年获阿劳中学毕业证书。业证书。1010月进苏黎世联邦工业大学师范系学习物理。月进苏黎世联邦工业大学师范系学习物理。18971897年在年在苏黎世结识贝索,与其终身友谊从此开始。苏黎世结识贝索,与其终身友谊从此开始。18991899年年1010月月1919日正式日正式申请瑞士公民权申请瑞士公民权6 1900 1900年年8 8月毕业于苏黎世联邦工业大学。月毕业于苏黎世联邦工业大学。1212月完成论文月完成论文由毛细由毛细管现象得到的推论管现象得到的推论,次年发表在莱比锡,次年发表在莱比锡物理学杂志物理学杂志上。上。1901 1901年取得瑞士国籍。月去米兰找工作,无结果年取得瑞士国籍。月去米兰找工作,无结果.5.5月回瑞月回瑞士,任温特图尔中学技术学校代课教师。士,任温特图尔中学技术学校代课教师。1010月到夏夫豪森任家庭教月到夏夫豪森任家庭教师。师。3 3个月后又失业。个月后又失业。1212月申请去伯尔尼瑞士专利局工作。月申请去伯尔尼瑞士专利局工作。-月月完成电势差的热力学理论的论文。完成电势差的热力学理论的论文。19021902年年2 2月到伯尔尼等待工作。和索洛文、哈比希特创建月到伯尔尼等待工作。和索洛文、哈比希特创建“奥林奥林匹亚科学院匹亚科学院”。月受聘为伯尔尼瑞士专利局的试用三级技术员。月受聘为伯尔尼瑞士专利局的试用三级技术员。月完成第三篇论文月完成第三篇论文关于热平衡和热力学第二定律的运动论关于热平衡和热力学第二定律的运动论,提出热力学的统计理论。提出热力学的统计理论。7 1905 1905年年3 3月,关于光量子假说的月,关于光量子假说的关于光的产生和转化关于光的产生和转化的一个试探性观点的一个试探性观点。提出光量子假说,解决了光电效应提出光量子假说,解决了光电效应问题。问题。19211921年,因此篇论文获得了诺贝尔物理学奖年,因此篇论文获得了诺贝尔物理学奖 19051905年年4 4、5 5月,论测定分子大小和布朗运动的月,论测定分子大小和布朗运动的分子分子大小的新测定大小的新测定、热的分子运动论所要求的静止液体中热的分子运动论所要求的静止液体中悬浮小粒子的运动悬浮小粒子的运动,取得博士学位。取得博士学位。19051905年年6 6月阐述狭义相对论的月阐述狭义相对论的论动体的电动力学论动体的电动力学、物体的惯性同它所含的能量有关吗?物体的惯性同它所含的能量有关吗?独立而完整地提独立而完整地提出狭义相对性原理,开创物理学的新纪元。出狭义相对性原理,开创物理学的新纪元。专业杂志专业杂志物理学纪事物理学纪事(Annalen der Physik)(Annalen der Physik)1905年,在现代科学史中,被称为年,在现代科学史中,被称为“爱因斯坦奇迹年爱因斯坦奇迹年”8 1 1太阳能电池、防盗报警器和照相机的测光表都是太阳能电池、防盗报警器和照相机的测光表都是以光电效应为基础的。以光电效应为基础的。2 2核能利用了这样一个物理现象:当铀原子发生裂核能利用了这样一个物理现象:当铀原子发生裂变时,总质量的微量损失可以转变成能量,其依据正是变时,总质量的微量损失可以转变成能量,其依据正是爱因斯坦的著名等式爱因斯坦的著名等式E EMcMc2 2。如今,核能为英国提供了。如今,核能为英国提供了2525的电力。的电力。3 3全球定位系统之所以能将物体的位置精确到米,全球定位系统之所以能将物体的位置精确到米,正是根据爱因斯坦的相对论对地球卫星发出的信号进行正是根据爱因斯坦的相对论对地球卫星发出的信号进行了修正。了修正。4 4狭义相对论与量子理论相结合,指出了反物质的狭义相对论与量子理论相结合,指出了反物质的存在。科学家们利用正电子,即反物质存在。科学家们利用正电子,即反物质“电子电子”,通过,通过X X射线层析照相术研究大脑活动。射线层析照相术研究大脑活动。得益于爱因斯坦理论的重大发明得益于爱因斯坦理论的重大发明 9 5 5亚原子粒子的特性是相对论的直接结果,其存亚原子粒子的特性是相对论的直接结果,其存在可以解释从化学元素的特性到磁铁作用的多种现象。在可以解释从化学元素的特性到磁铁作用的多种现象。6 6爱因斯坦爱因斯坦19161916至至19171917年对光子的研究为人类年对光子的研究为人类4040年后发现激光奠定了基础。目前激光广泛应用于从年后发现激光奠定了基础。目前激光广泛应用于从DVDDVD到激光打印机的多种产品。到激光打印机的多种产品。10 狭义相对论主要内容狭义相对论主要内容:1 1爱因斯坦的两个基本假设爱因斯坦的两个基本假设 2 2洛伦兹变换洛伦兹变换 3 3相对论速度变换相对论速度变换 4.4.相对论质量相对论质量 5.5.力和加速度的关系力和加速度的关系 6.6.相对论能量相对论能量 7.7.相对论动量相对论动量 8.8.相对论动量与能量的关系相对论动量与能量的关系 9.9.相对论力的变换相对论力的变换 11萨尔维阿蒂的大船萨尔维阿蒂的大船跳向船尾不跳向船尾不会比跳向船会比跳向船头来得远头来得远蝴蝶和苍蝴蝶和苍蝇随便地蝇随便地到处飞行到处飞行水滴入罐,不水滴入罐,不会滴向船尾会滴向船尾鱼在碗中悠鱼在碗中悠闲地游动闲地游动 你无法从其中发生的任何一个现象来确定,船是在运你无法从其中发生的任何一个现象来确定,船是在运动还是停着不动动还是停着不动伽利略伽利略相对性原理相对性原理经典力学的时空观经典力学的时空观121.力学力学相对性原理相对性原理力学现象力学现象对一切惯性系来说,都遵从同样的规律。对一切惯性系来说,都遵从同样的规律。在研究在研究力学规律力学规律时,一切惯性系都是等价的。时,一切惯性系都是等价的。2.伽利略坐标变换伽利略坐标变换或:或:oxyyvoSxxvtS设设 to=to=0 时,时,S 与与S重合。重合。任意任意 t 时刻:时刻:13S S S S 系系系系S S S S 系系系系不同惯性系测两事不同惯性系测两事件的时间间隔相同件的时间间隔相同S S S S 系系系系S S S S 系系系系不同惯性系测两事不同惯性系测两事件的空间间隔相同件的空间间隔相同3.经典力学的时空观经典力学的时空观空间测量的绝对性空间测量的绝对性时间测量的绝对性时间测量的绝对性14(3)高速运动的粒子高速运动的粒子爱因斯坦的时空观爱因斯坦的时空观 一一.伽利略变换的困难伽利略变换的困难(1)电磁场方程组不服从伽利略变换电磁场方程组不服从伽利略变换(2)光速光速C 迈克耳逊迈克耳逊-莫雷实验莫雷实验15二、相对论的基本假设二、相对论的基本假设.爱因斯坦相对性原理:爱因斯坦相对性原理:物理规律对一切惯性系都是一样的,不存在任物理规律对一切惯性系都是一样的,不存在任何一个特殊的(例如何一个特殊的(例如“绝对静止绝对静止”的)惯性系。的)惯性系。否定了否定了绝对运动绝对运动、绝对静止绝对静止。对运。对运 动的描述永远只具有动的描述永远只具有相对相对的意义。的意义。作用:作用:同一物理定律在所有惯性系中具有相同的形式。同一物理定律在所有惯性系中具有相同的形式。16.光速不变原理:光速不变原理:在任何惯性系中,光在真空中的速率都在任何惯性系中,光在真空中的速率都相等。(与光源和观察者的运动无关。)相等。(与光源和观察者的运动无关。)否定了否定了绝对时间绝对时间和和绝对空间绝对空间的概念的概念作用:作用:依据:依据:19641964年到年到19661966年,欧洲核子中心(年,欧洲核子中心(CERNCERN)在质子同步加速器中作了有关光速的精密在质子同步加速器中作了有关光速的精密 实验测量,直接验证了实验测量,直接验证了光速不变原理。光速不变原理。17例例1(8017)当惯性系当惯性系S和和S坐标原点坐标原点O和和O重合重合 时,有一点光源从坐标原点发出时,有一点光源从坐标原点发出 一光脉,一光脉,对对S系经过一段时间系经过一段时间t后后(对对S 系经过时间为系经过时间为 t),此光脉冲的球面方程(用直角坐标系,此光脉冲的球面方程(用直角坐标系)分别为:分别为:S S系系S系系18例例2 2(43534353)已知惯性系已知惯性系SS相对于惯性系相对于惯性系S S以以 的匀速度沿的匀速度沿 轴的负方向运动,若从轴的负方向运动,若从SS 系的坐标原点系的坐标原点OO沿沿 轴的正方向发出一光轴的正方向发出一光 波,则波,则S S系中测得此光波的波速系中测得此光波的波速=?解:解:S S系中测得此光波的波速系中测得此光波的波速根据根据光速不变原理光速不变原理,光速与参照系无关。,光速与参照系无关。19例例3 3(80168016)有一速度为有一速度为 的宇宙飞船沿的宇宙飞船沿 轴正方向飞行,飞船头尾各有一个脉轴正方向飞行,飞船头尾各有一个脉 冲光源在工作,处于船尾的观察者测冲光源在工作,处于船尾的观察者测 得船头光源发出的光脉冲的传播速度得船头光源发出的光脉冲的传播速度 大小大小=?处于船头的观察者测得船尾光?处于船头的观察者测得船尾光 源发出的光脉冲的传播速度大小源发出的光脉冲的传播速度大小=?解:解:处于船尾的观察者测得船头光源发出处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小的光脉冲的传播速度大小处于船头的观察者测得船尾光源发出处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小的光脉冲的传播速度大小20例例4 4(80158015)下列几种说法:下列几种说法:(1 1)所有惯性系对物理基本规律都是等价的。)所有惯性系对物理基本规律都是等价的。(2 2)在真空中,光的速度与光的频率、光源的)在真空中,光的速度与光的频率、光源的 运动状态无关。运动状态无关。(3 3)在任何惯性系中,光在真空中沿任何方向)在任何惯性系中,光在真空中沿任何方向 的传播速度都相同。的传播速度都相同。其中那些说法是正确的?其中那些说法是正确的?(A A)只有()只有(1 1)、()、(2 2)是正确的)是正确的 (B B)只有()只有(1 1)、()、(3 3)是正确的)是正确的 (C C)只有()只有(2 2)、()、(3 3)是正确的)是正确的 (D D)三种说法都是正确的。)三种说法都是正确的。答案答案:(D)21思考思考(80188018)设惯性系设惯性系S 相对于惯性系相对于惯性系S以速度以速度 沿沿 轴正方向运动,如果从轴正方向运动,如果从 S系的坐系的坐 标原点标原点O沿沿 正方向发射一光脉冲,正方向发射一光脉冲,则(则(1 1)在)在S系中测得光脉冲的传播速系中测得光脉冲的传播速 度为度为C (2 2)在)在S系中测得光脉冲的传播速系中测得光脉冲的传播速 度为度为 以上两个说法是否正确?如有错误,请说以上两个说法是否正确?如有错误,请说 明为什么错并予以改正。明为什么错并予以改正。22Hendrik Antoon Lorentz洛伦兹洛伦兹(18531928)荷兰莱顿大学教授荷兰莱顿大学教授.1902年与荷兰阿姆斯特年与荷兰阿姆斯特丹大学的塞曼共同获得丹大学的塞曼共同获得诺贝尔物理学奖,以表诺贝尔物理学奖,以表彰他们在研究磁性对辐彰他们在研究磁性对辐射现象的影响所作的特射现象的影响所作的特殊贡献殊贡献23 为说明迈克耳孙莫雷实验的结果,为说明迈克耳孙莫雷实验的结果,他独立提出了长度收缩的假说,并于他独立提出了长度收缩的假说,并于1895年发表了长度收缩的准确公式年发表了长度收缩的准确公式.1904年,他发表了年,他发表了著名的洛伦兹变换公著名的洛伦兹变换公式和质量与速度的关式和质量与速度的关系式,并指出光速是系式,并指出光速是物体相对于以太运动物体相对于以太运动速度的极限速度的极限.24 洛伦兹的成就对洛伦兹的成就对我产生了最伟大的影我产生了最伟大的影响,他是我们时代最响,他是我们时代最伟大、最高尚的人伟大、最高尚的人.爱因斯坦爱因斯坦25三、洛伦兹变换三、洛伦兹变换(1)惯性系惯性系S相对于惯性相对于惯性 系系S以速度以速度 沿沿 轴轴 正方向运动正方向运动.(2)设设 to=to=0 时,时,S 与与S重合。重合。26u 已知已知S系:系:求求S:已知已知S系:系:求求S:洛伦兹变换洛伦兹变换27u 已知已知S系:系:求求S系:系:已知已知S系:系:求求S系:系:洛伦兹逆变换洛伦兹逆变换28讨论讨论1.相对论中时空测量不可分离。相对论中时空测量不可分离。2.伽利略变换只是洛仑兹变换在伽利略变换只是洛仑兹变换在 的一个近似。的一个近似。3.c是一切实物运动速度的极限。是一切实物运动速度的极限。即:即:任何物体相对另一物体任何物体相对另一物体的速度不等于或不超过真空中的光速的速度不等于或不超过真空中的光速29例例5 5(41724172)一宇宙飞船相对地球以一宇宙飞船相对地球以0.80.8c的速度的速度 (c表示真空中光速)飞行,一光脉冲从船尾表示真空中光速)飞行,一光脉冲从船尾 传到船头,飞船上的观察者测得飞船长为传到船头,飞船上的观察者测得飞船长为 90 90 ,地球上的观察者测得光脉冲从船尾,地球上的观察者测得光脉冲从船尾 发出和到达船头两个事件的空间间隔发出和到达船头两个事件的空间间隔=?解:解:参照系参照系S:地球地球参照系参照系S:飞船飞船地球上的观察者测得光脉冲从船尾发出和到达地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔船头两个事件的空间间隔30答案:答案:31作业:作业:P340 341 6.5 6.6 6.11 试证明:试证明:(1)如果两个事件在某惯性系中是在同一地点如果两个事件在某惯性系中是在同一地点发生,则对一切惯性系来说这两个事件的时发生,则对一切惯性系来说这两个事件的时间间隔,只有在此惯性系中最短间间隔,只有在此惯性系中最短(2)如果两个事件在某惯性系中是同时发生,如果两个事件在某惯性系中是同时发生,则对一切惯性系来说这两个事件的空间间隔,则对一切惯性系来说这两个事件的空间间隔,只有在此惯性系中最短。只有在此惯性系中最短。32 例例6 在在S系中的系中的X轴上相隔为轴上相隔为 处处 有两只同步的钟有两只同步的钟A和和B,读数相同,在,读数相同,在 S系的系的X 轴上也有一只同样的钟轴上也有一只同样的钟A ,若若 S 系相对于系相对于S系的速度为系的速度为V,沿,沿X轴方轴方 向。且当向。且当A 与与A相遇时,刚好两钟的读数相遇时,刚好两钟的读数 均为零,那么,当均为零,那么,当A 钟与钟与B钟相遇时,钟相遇时,在在S系中系中B钟的读数钟的读数=?此时,在?此时,在S 系中系中A 钟的读数钟的读数=?33在在S系看:系看:在在S 系看:系看:当当A 钟与钟与B钟相遇时,钟相遇时,B钟钟的读数的读数A 与与A、B相遇两事件时相遇两事件时间间隔间间隔(A 钟的读数)钟的读数)解解:34A 与与A、B相遇两事件的空相遇两事件的空间间隔间间隔思考:思考:A 与与A、B相遇两事件是相遇两事件是同地发生同地发生,即:即:在在S 系看:系看:在在S 系看:系看:35事件事件 1:车厢:车厢后后壁接收器接收到光信号壁接收器接收到光信号.事件事件 2:车厢:车厢前前壁接收器接收到光信号壁接收器接收到光信号.三、三、狭义相对论效应狭义相对论效应1.同时的相对性同时的相对性 在一个惯性系中观察是同时发生的两事件,在另在一个惯性系中观察是同时发生的两事件,在另一个惯性系中观察一个惯性系中观察不一定不一定是同时发生的。是同时发生的。36S 系中系中两事件的时间间隔为两事件的时间间隔为S系中系中两事件同时发生,时间间隔两事件同时发生,时间间隔仅当两件事在仅当两件事在S 系中同地同时发生系中同地同时发生:S 系中才是同时发生系中才是同时发生:37(2)长度收缩(动尺缩短)长度收缩(动尺缩短)u条件:条件:即:即:时,时,在相对于尺子(棒)运动的参照在相对于尺子(棒)运动的参照系中(如:在系中(如:在S S系中)要系中)要同时同时记记录尺子(棒)两端的坐标。录尺子(棒)两端的坐标。在相对于尺子(棒)静止的参照系中(如:在在相对于尺子(棒)静止的参照系中(如:在S系中)系中):动画动画动画动画动画动画38根据洛伦兹变换:根据洛伦兹变换:固有长度(原长、静长):固有长度(原长、静长)相对于尺子(棒)静止的参照系中测量相对于尺子(棒)静止的参照系中测量的尺子(棒)长。的尺子(棒)长。最长最长长度收缩只发生在速度方向长度收缩只发生在速度方向注意:注意:39 结论结论(1 1)相对观察者运动的物体沿运动方向长度缩短了。相对观察者运动的物体沿运动方向长度缩短了。(3 3)收缩效应与测量有关,不表示物质内部结构的改收缩效应与测量有关,不表示物质内部结构的改 变。是一种物质的时空属性。变。是一种物质的时空属性。(2 2)长度缩短具相对性。长度缩短具相对性。uu 长度缩短长度缩短:40u 已知已知S系:系:求求S:已知已知S系:系:求求S:洛伦兹变换洛伦兹变换41u 已知已知S系:系:求求S系:系:已知已知S系:系:求求S系:系:洛伦兹逆变换洛伦兹逆变换42(1)长度收缩(动尺缩短)长度收缩(动尺缩短)u条件:条件:在相对于尺子(棒)运动的参照在相对于尺子(棒)运动的参照系中(如:在系中(如:在S S系中)要系中)要同时同时记记录尺子(棒)两端的坐标。录尺子(棒)两端的坐标。相对论效应相对论效应43u条件:条件:两个事件在某一参照系中两个事件在某一参照系中同地同地发生发生(2)时间延缓(时间膨胀)时间延缓(时间膨胀)44例例(4357)在在O参照系中,有一个静止的参照系中,有一个静止的 正方形,其面积为正方形,其面积为100cm2。观测者。观测者O 以以0.8C的匀速度沿正方形的对角线运的匀速度沿正方形的对角线运 动动,求求O所测得的该图形的面积。所测得的该图形的面积。解:解:在在O参照系中参照系中A、B间对角线长度间对角线长度在在O参照系中参照系中A、B间长度间长度45 O所测得的该图形的面积所测得的该图形的面积46例例(4370)在在K惯性系中,相距惯性系中,相距 的两个地方发生两事件,时间间隔的两个地方发生两事件,时间间隔 ;而在相对于;而在相对于K系沿正系沿正 方向匀方向匀 速运动的速运动的K系中观测到这两事件却是系中观测到这两事件却是同同 时时发生的。试计算在发生的。试计算在K系中发生这两事系中发生这两事 件的地点间的距离是多少?件的地点间的距离是多少?解:解:47方法二方法二:48练习练习一列高速火车以速度一列高速火车以速度 驶过车站时,固定在驶过车站时,固定在站台上的两只机械手在车厢上站台上的两只机械手在车厢上同时同时划出两个划出两个痕迹,静止在站台上的观察者同时测出两痕痕迹,静止在站台上的观察者同时测出两痕迹之间的距离为迹之间的距离为1m,则车厢上的观察者应,则车厢上的观察者应测出这两个痕迹之间的距离为多少?测出这两个痕迹之间的距离为多少?解:解:车厢上的观察者测出的这两个痕迹车厢上的观察者测出的这两个痕迹之间的距离之间的距离=原长原长静止在站台上的观察者同时测出两痕迹之间静止在站台上的观察者同时测出两痕迹之间的距离:的距离:49运运 动动 的的 钟钟 走走 得得 慢慢(3)时间延缓(时间膨胀时间延缓(时间膨胀,动钟变慢动钟变慢)50列车中小睡的旅客入睡和睡醒两事件列车中小睡的旅客入睡和睡醒两事件S系中系中两事件:两事件:S 系中系中两事件的时间间隔两事件的时间间隔:地面观察者:运动的钟变慢了!地面观察者:运动的钟变慢了!睡醒时睡醒时入睡时入睡时S S 系系系系S S 系系系系(3)时间延缓(时间膨胀时间延缓(时间膨胀,动钟变慢动钟变慢)51两个事件在某一参照系中两个事件在某一参照系中同地同地发生发生(如:在如:在S 系中同地发生系中同地发生)u条件:条件:在在此参照系此参照系(S 系系)中同一地点发生的两个事中同一地点发生的两个事件的时间间隔为件的时间间隔为 :在其它任何惯性参照系在其它任何惯性参照系(S系系)中这同样两个事中这同样两个事件的时间间隔件的时间间隔 :代入代入52则则:固有时间(原时)固有时间(原时)(两事件两事件同地同地发生的参照系中测量的时间间隔发生的参照系中测量的时间间隔)最短最短讨论讨论 时间延缓效应在高能物理实验中得时间延缓效应在高能物理实验中得 到实验证明到实验证明:介子、介子、介子介子 运动时钟变慢完全是运动时钟变慢完全是相对性时空相对性时空效应,效应,与钟的具体结构和其他外界因素无关。与钟的具体结构和其他外界因素无关。动画动画53=子产生(出生)和湮灭子产生(出生)和湮灭 (死亡)两事件之间的(死亡)两事件之间的时时 间间隔间间隔例例.子是一种基本粒子,在相对于子是一种基本粒子,在相对于 子静止的坐标系中测得其寿命为子静止的坐标系中测得其寿命为 ,如果,如果 子相对于地球子相对于地球 的速度为的速度为 (c为真空中光为真空中光 速),则在地球坐标系中测出的速),则在地球坐标系中测出的 子子 的寿命的寿命解:解:设:相对于设:相对于 子子静止静止的参照系为的参照系为子寿命子寿命54 子产生(出生)湮灭和(死亡)两事件子产生(出生)湮灭和(死亡)两事件 之间的之间的空间空间间隔间隔(原时)(原时)在地球坐标系中测出的在地球坐标系中测出的 子的寿命子的寿命55例例(4378)火箭相对于地面以火箭相对于地面以V=0.6C(C 为真空中光速)的匀速度飞离地球。在为真空中光速)的匀速度飞离地球。在 火箭发射火箭发射 秒钟后(火箭上的秒钟后(火箭上的 钟),该火箭向地面发射一导弹,其速钟),该火箭向地面发射一导弹,其速 度相对于地面为度相对于地面为V1=0.3C,问火箭发射,问火箭发射 后多长时间,导弹到达地球?(地球上后多长时间,导弹到达地球?(地球上 的钟)计算中假设地面不动。的钟)计算中假设地面不动。发射导弹处发射导弹处解:解:火箭飞离地球到发射导弹火箭飞离地球到发射导弹经历的时间间隔经历的时间间隔S系:系:地球地球56S系:系:火箭火箭地球上看地球上看 (S S系看):系看):火箭飞离地球到发射导火箭飞离地球到发射导弹经历的空间间隔(上弹经历的空间间隔(上升距离)升距离)(原时)(原时)则:则:57 火箭发射导弹到导弹到火箭发射导弹到导弹到达地球经历的时间间隔达地球经历的时间间隔 地球上观察者观察到的总时间间隔地球上观察者观察到的总时间间隔地球上看地球上看 (S系看):系看):58在实验室中观察,考虑时间膨胀效应:在实验室中观察,考虑时间膨胀效应:则则:练习练习带正电的带正电的 介子是一种不稳定的粒子,当它静止时,介子是一种不稳定的粒子,当它静止时,平均寿命平均寿命 t =2.5 10-8s,然后衰变为一个,然后衰变为一个 介子和介子和 一个中微子。在实验室产生一束一个中微子。在实验室产生一束v=0.99C的的 介子,介子,并测得它在衰变之前通过的平均距离为并测得它在衰变之前通过的平均距离为52m。这些。这些 测量结果说明什么?测量结果说明什么?解:解:它在实验室走过的距离为:它在实验室走过的距离为:“洞中方一日,世上已千年洞中方一日,世上已千年”=2.5 10-8s=1.77 10-7s 静止时平均寿命为静止时平均寿命为原时原时:59洛仑兹变换洛仑兹变换得到结论得到结论同时性的相对性同时性的相对性运动的时钟变慢运动的时钟变慢运动的尺子缩短运动的尺子缩短爱因斯坦时空观小结爱因斯坦时空观小结:10.牛顿时空观牛顿时空观在高速运动领域不成立在高速运动领域不成立20.爱因斯坦相对性原理爱因斯坦相对性原理30.光速不变原理光速不变原理40.由洛仑兹变换得出的相对论效应由洛仑兹变换得出的相对论效应原时原时最短最短原长最长原长最长显然这些结论与牛顿时显然这些结论与牛顿时空及伽利略变换相矛盾空及伽利略变换相矛盾!60经典时空观:经典时空观:相对论时空观:相对论时空观:空间是绝对的,时间是绝对的,空间、时间空间是绝对的,时间是绝对的,空间、时间和物质运动三者没有联系。和物质运动三者没有联系。a.时间、空间有着密切联系,时间、空间与物质时间、空间有着密切联系,时间、空间与物质 运动是不可分割的。运动是不可分割的。b.b.不同惯性系各有自己的时间坐标,并相互发现不同惯性系各有自己的时间坐标,并相互发现 对方的对方的钟钟走走慢慢了。了。c.不同惯性系各有自己的空间坐标,并相互发现不同惯性系各有自己的空间坐标,并相互发现 对方的对方的“尺尺”缩短缩短了。了。两种时空观对照两种时空观对照61 d.作相对运动的两个惯性系中所测得的运动物体作相对运动的两个惯性系中所测得的运动物体 的速度,不仅在相对运动的方向上的分量不同,的速度,不仅在相对运动的方向上的分量不同,而且在垂直于相对运动方向上的分量也不同。而且在垂直于相对运动方向上的分量也不同。e.光在任何惯性系中传播速度都等于光在任何惯性系中传播速度都等于 C,并且是,并且是 任何物体运动速度的最高极限。任何物体运动速度的最高极限。f.在一个惯性系中同时发生的两事件,在另一惯在一个惯性系中同时发生的两事件,在另一惯 性系中可能是不同时的。性系中可能是不同时的。62洛仑兹速度变换式洛仑兹速度变换式正变换正变换逆变换逆变换63(课后练习)(课后练习)两个惯性系两个惯性系K与与K坐标轴相互坐标轴相互 平行,平行,K系相对于系相对于K系沿系沿X轴作匀速运轴作匀速运 动,在动,在K系的系的X轴上,相距为轴上,相距为L的的A、B两点处各放一只已经彼此对准了的两点处各放一只已经彼此对准了的 钟,试问在钟,试问在K系中的观测者看这两只钟系中的观测者看这两只钟 是否也是对准了?为什么?是否也是对准了?为什么?答:答:没对准没对准根据洛伦兹根据洛伦兹 逆变换式有逆变换式有64如题所述两钟在如题所述两钟在K系系中对准,即同时中对准,即同时但两钟相距但两钟相距L,不同地,不同地因此,在因此,在K系系中某一时刻同时观察,这两个钟的示中某一时刻同时观察,这两个钟的示数必不相同,没对准。数必不相同,没对准。65(课后练习)(课后练习)观测者甲和乙分别静止于两个观测者甲和乙分别静止于两个 惯性参照系惯性参照系K和和K中,甲测得在同一地中,甲测得在同一地 点发生的两个事件的时间间隔为点发生的两个事件的时间间隔为4s,而,而 乙测得这两个事件的时间间隔为乙测得这两个事件的时间间隔为5s,求,求 (1)K相对于相对于K的运动速度。的运动速度。(2)乙测得这两个事件发生的地点的距离。)乙测得这两个事件发生的地点的距离。解:解:K系中甲看:系中甲看:两个事件两个事件K系中乙看:系中乙看:两个事件两个事件(1)66根据洛伦兹变换式有或(2)67 在不同惯性系在不同惯性系中大小不同中大小不同.m0m12340.20.41.000.60.8v c四、狭义相对论动力学四、狭义相对论动力学1.相对论质量相对论质量物体相对于惯性系静止时物体相对于惯性系静止时的质量的质量,称为称为静止质量静止质量.68例例V=11.2Km/s m=1.0000000009m0V=0.98C m=5m0结论结论:质量具有相对意义质量具有相对意义.,可以认为质点的可以认为质点的质量是一个常量质量是一个常量,牛顿力学仍然适用牛顿力学仍然适用.当当 时时2.相对论动量:相对论动量:69说明:说明:b.当当 时,时,即不论对物体加多大的力,即不论对物体加多大的力,也不可能再使它的速度增加也不可能再使它的速度增加。c.当当 时,必须时,必须 即以光速运动的物即以光速运动的物 体是没有静止质量的。体是没有静止质量的。a.在在 时时,。703相对论力学基本方程相对论力学基本方程在在 的条件下:的条件下:当当 时,时,急剧增加,而急剧增加,而 ,所以光速,所以光速C为物体的极限速度为物体的极限速度.动量定理:动量定理:71相对论动量守恒定律相对论动量守恒定律:当当时,时,不变不变.72 4.相对论动能相对论动能讨论讨论?若若vc735.相对论总能量相对论总能量E=mc2相对论质能关系相对论质能关系相对论意义上的总能量:相对论意义上的总能量:E=Ek+m0c2=mc2Eo=moc2静止能量:静止能量:相对论动能:相对论动能:EK=mc2-m0c2讨论讨论物体处于静止状态时,物体也蕴涵物体处于静止状态时,物体也蕴涵着相当可观的静能量。着相当可观的静能量。任何宏观静任何宏观静止的物体具有能量止的物体具有能量相对论中的质量不仅是惯性的量度,而相对论中的质量不仅是惯性的量度,而且还是总能量的量度。且还是总能量的量度。质量的大小同时质量的大小同时标志能量的大小。标志能量的大小。74质量亏损质量亏损释放的能量释放的能量如果一个系统的质量发生变化,能量必如果一个系统的质量发生变化,能量必有相应的变化。有相应的变化。对一个孤立系统而言,总能量守恒,总质量对一个孤立系统而言,总能量守恒,总质量 也守恒。也守恒。75注意注意(1 1)在核反应中,反应前所有粒子的总能量)在核反应中,反应前所有粒子的总能量 =反应后所有粒子的总能量反应后所有粒子的总能量(2 2)核反应释放的能量)核反应释放的能量=反应前后粒子总动反应前后粒子总动 能的增量能的增量(Ek2-Ek1)=反应前后粒子静反应前后粒子静 能的减少量能的减少量释放的能量释放的能量通常记:通常记:761.相对论质量相对论质量2.相对论动量:相对论动量:3.动量定理:动量定理:77 4.相对论动能相对论动能5.相对论总能量相对论总能量(质能质能关系关系)E=mc2质能关系质能关系预言预言:物质的质量就是能量的一种储藏物质的质量就是能量的一种储藏.相对论能量和质量守恒是一个相对论能量和质量守恒是一个统一统一的物理规律的物理规律.78爱因斯坦认为爱因斯坦认为(1905)物体的懒惰性就是物体活泼性的物体的懒惰性就是物体活泼性的度量度量.懒惰性懒惰性 惯性惯性(inertia)活泼性活泼性 能量能量(energy)表明表明:79物理意义物理意义 惯性质量的增加和能量的增加相联惯性质量的增加和能量的增加相联系,质量的大小应标志着能量的大小,系,质量的大小应标志着能量的大小,这是相对论的又一极其重要的推论这是相对论的又一极其重要的推论 .80 相对论的质能关系为开创原子能时相对论的质能关系为开创原子能时代提供了理论基础代提供了理论基础,这是一个具有划时这是一个具有划时代的意义的理论公式代的意义的理论公式.81 质能公式在原子核裂变和聚变中的应用质能公式在原子核裂变和聚变中的应用质量亏损质量亏损原子质量单位原子质量单位 放出的能量放出的能量1 1 核裂变核裂变1g 铀铀 235 的原子裂变所释放的能量的原子裂变所释放的能量82原子弹核裂变原子弹核裂变83我国于我国于 1958 年建成的首座重水反应堆年建成的首座重水反应堆84秦山核电站秦山核电站全景图全景图在建的在建的阳江核电站阳江核电站效果图效果图85在建的在建的江苏连云港江苏连云港田湾核电站田湾核电站862 轻核聚变轻核聚变释放能量释放能量质量亏损质量亏损 轻核聚变轻核聚变条件条件 温度达到温度达到 时,时,使使 具有具有 的动能,足以克服的动能,足以克服两两 之间的库仑排斥力之间的库仑排斥力.氘核氘核氦核氦核871967年年6月月17日,中国第日,中国第一颗氢弹爆一颗氢弹爆炸成功炸成功 88相对论相对论质能关系质能关系在军事上的应用:核武器在军事上的应用:核武器原原子子弹弹爆爆炸炸冲冲击击波波放射性沾染放射性沾染核电磁脉冲核电磁脉冲早期核辐射早期核辐射896能量和动量的关系能量和动量的关系相对论能量相对论能量-动量关系的一个结果,动量关系的一个结果,指出可能存在指出可能存在“无质量无质量”粒子粒子即这些粒子具有动量,能量,但没有即这些粒子具有动量,能量,但没有静质量静质量,所以也没有静能。故所以也没有静能。故只能以光速运动,永远不会停止。例只能以光速运动,永远不会停止。例如光子,中微子。如光子,中微子。90 例例:设一质子以速度设一质子以速度 运动运动.求其总能量、动能和动量求其总能量、动能和动量.解解1 质子的静能质子的静能91也可如此计算也可如此计算 例例1 设一质子以速度设一质子以速度