赵语临床药动学和tdm临床生物等效性教学文案.ppt
赵语临床药动学和TDM临床生物等效性Part I药动学和生物利用度11/22/20222药动学和TDM药理学药理学药理学药理学 研究药物与机体相互作用规律的一门科学。研究内容:药物效应动力学 药物代谢动力学11/22/20223药动学和TDM药物代谢动力学(药物代谢动力学(pharmacokinetics)亦称药动学,是研究机体对药物的作用规律的学科。系应用动力学(kinetics)原理与数学模式,定量地描述与概括药物通过各种途径(如静脉注射、滴注,口服给药等)进入体内的吸收(Absorption)、分布(Distribution)、代谢(Metabolism)和排泄(Elimination),即A过程的“量时”变化或“血药浓度经时”变化的动态规律的一门科学。11/22/20224药动学和TDM药物动力学药物动力学多种名称药代动力学,药代学,药物代谢动力学,药物动力学,药动学,PK,ADME吸收动力学代谢动力学消除动力学毒代动力学体内过程研究药物的吸收(A)、分布(D)、代谢(M)、排泄(E)等体内过程的规律(ADME)药动学参数实际上只能分析吸收、分布、消除(包括代谢和排泄)规律11/22/20225药动学和TDM药动力学药动力学 药物在人体内吸收、分布、代谢、排泄,应用药代动力学的原理设计和完善给药方案。体内药物浓度随时体内药物浓度随时间变化的规律间变化的规律11/22/20226药动学和TDM临床药动学临床药动学临床药动学:研究药物在人体内的动力学规律并应用于合理设计个体给药方案的综合性应用技术学科。临床药动学:应用血药浓度数据、药动学原则和药效学指标使临床药物治疗方案合理化。11/22/20227药动学和TDM临床药动学研究的基本内容临床药动学研究的基本内容新药临床药动学研究;药物制剂生物等效性评价;药物浓度与药物效应关系研究;疾病对药动学过程的影响研究;合并用药对药物体内过程的影响研究;给药途径对药物体内过程的影响研究;治疗药物监测(TDM);n11/22/20228药动学和TDM血药浓度与药物效应血药浓度与药物效应11/22/20229药动学和TDM血药浓度与药物效应血药浓度与药物效应 治疗浓度范围(Therapeutic range):是指有利的临床反应概率相对的高,而不利的临床反应概率相对的低的血药浓度区间。有效血药浓度范围:最低有效浓度(Minimum effect concentration,“MEC”)与最低毒性反应浓度(Minimum toxic concentration,“MTC”)之间的血药浓度范围。11/22/202210药动学和TDM与血药浓度密切相关的药动学参数与血药浓度密切相关的药动学参数 吸收速度常数“Ka”吸收速度常数是单位时间被吸收进入体内药物量占给药部位剩留药量的分数。消除速度常数“K”消除速度常数是单位时间机体消除体内剩留药量的分数。生物利用度“F”生物利用度是指制剂中药物被吸收进入体循环的速度与程度。11/22/202211药动学和TDM与血药浓度密切相关的药动学参数与血药浓度密切相关的药动学参数 表观分布容积“V”药物的表观分布容积是指体内药物量按此时体内血药浓度溶解所需体液的理论体积。n 蛋白结合率“P”血液中药物-蛋白结合物占血液中药物总量的百分率。清除率“CL”单位时间机体清除含药血浆的体积。11/22/202212药动学和TDM药物体内动力学过程药物体内动力学过程n一级动力学(恒比吸收、消除)dC/dt=-kC k:消除速率常数n零级动力学(恒量速、吸收消除)dC/dt=-k非线性动力学(米氏方程)-dC/dt=Vm*C/(Km+C)Vm:理论上的体内药物最大消除速度 Km:米氏常数。消除速度为1/2 Vm时的血药浓度11/22/202213药动学和TDM速率过程特点速率过程特点n一级速率包括:一级吸收,一级消除特点:定比例吸收或消除n零级速率包括:零级吸收,零级消除特点:定量吸收或消除n米曼式(非线性)速率常先呈零级速率,后呈一级速率特点:常先定量吸收或消除,后定比例吸收或消除一级速率一级速率零级速率零级速率非线性速率非线性速率11/22/202214药动学和TDM 室模型及其选择室模型及其选择n室模型:把药物体内分布与消除速率相似的部分用室来表征,从而将复杂的机体模拟为室的组合,把药物体内过程描述为各室间药物量的变化过程,以处理药物动力学数据的方法。Single compartment model Two compartment model Multic compartment modeln室模型的特点:相对性;客观性;抽象性11/22/202215药动学和TDM房室模型房室模型n一室模型Ka吸收速率Ke消除速率Vd表观分布容积n二室模型K12:1室到2室的速率K21:2室到1室的速率K10:消除速率常数V1:1室表观分布容积n三室模型nK13:1室到2室的速率nK31:1室到2室的速率n其他符号意义同二室11/22/202216药动学和TDM图例图例 一室一室(少见少见)二室二室(多数药物多数药物)三室三室(与内源物相近者与内源物相近者)静注给药静注给药C-T曲线曲线 C-T曲线曲线lnC-T曲线曲线11/22/202217药动学和TDM一级参数与二级参数一级参数与二级参数一级参数药动学数学方程中变量前的系数例如:A,B,G,二级参数由一级参数变换、计算所得例如:t1/2,K10,Vd,CL,K12,K21通常药动学参数是指二级参数11/22/202218药动学和TDM反映吸收的参数:反映吸收的参数:AUCnAUC(c-t曲线下面积):AUC0 指药物从零时间至所有原形药物全部消除这一段时间的药-时曲线下总面积,反映药物进入血循环的总量。n既反映吸收,又反映体内药量和蓄积nAUC:有四种实测AUC(0t)梯形计算值AUC(0)梯形计算值拟合AUC*(0t)积分拟合值AUC*(0)积分拟合值11/22/202219药动学和TDM四种四种AUC11/22/202220药动学和TDMAUC计计 算算 方方 法法方法一:根据 A、B、各值计算方法二:梯形面积法(trapezoidal rule)11/22/202221药动学和TDMAUC计计 算算 方方 法法11/22/202222药动学和TDMAUC梯形面积法梯形面积法n总面积各间隔时间内梯形面积和 AUC0n=(1/2)(C1+C2)(t2-t1)+(1/2)(C2+C3)(t3-t2)+(1/2)(Cn-1+Cn)(tn-tn-1)AUC0:以最小二乘法先求,再按下式算出 AUC0=AUC0n+Cn/11/22/202223药动学和TDM反映吸收的浓度参数反映吸收的浓度参数n平均稳态血浓Cav(ss)=AUCss/等间隔()恒量多次用药 5-7个t1/2到稳态 t1/2 不蓄积 t1/2 可蓄积 (t1/2)/1.4 易蓄积n静注给药的零时血浓(C0)11/22/202224药动学和TDM11/22/202225药动学和TDM反映吸收的峰值参数反映吸收的峰值参数n为非静脉给药参数药浓峰值 实测值:Cmax 拟合值:Cp达峰时间 实测值:Tmax 拟合值:Tp11/22/202226药动学和TDM反应吸收速率的常数:反应吸收速率的常数:Kan曲线拟合法 有误差n吸收百分数-时间图不管一级吸收或零级吸收Wagner-Nelson法:单室模型Loo-Riegelman法:需静注、口服两类数据n反卷积分法需静注、口服两类数据两类数据浓度的时间点相同11/22/202227药动学和TDMC(t)=Ae-t+Be-t+Ge-t11/22/202228药动学和TDM反映分布的参数:反映分布的参数:Vd(表观分布容积表观分布容积)n概念:概念:指静脉注射一定量药物待分布平衡后,按测得的血药浓度计算该药应占有的血浆容积。VdX(mg)/C(mg/L)(=CL/Vd)n意义:意义:了解药物分布的广泛程度或与组织。如一定量的药物,Vd大时,血药浓度低,组织分布广;Vd小时,血药浓度高,组织中药物少。11/22/202229药动学和TDM表观分布容积:表观分布容积:Vdn多种形式:Vd,Vc(V1),V2n两种表达剂量按个体用药,不管体重,Vd单位为L剂量按公斤体重给药,Vd单位为L/kgn人体试验,A、B、C三药均静注6mg,其血浓不同:A药 0.6 mg/L,Vd=10L 药物近似全身分布(人:2.5-36 L)B药 6 mg/L,Vd1L 药物主要在血中(人:36 L)实际上人体不可能有100L体液,故称“表观分布容积”11/22/202230药动学和TDM反映消除的参数:反映消除的参数:t1/2(半衰期)(半衰期)n指血药浓度下降一半所需的时间。n反映消除,t1/2=0.693/Ken多种t1/2一室:t1/2二室:t1/2,t1/2三室:t1/2,t1/2,t1/2n现主张统一用t1/2z 终末半衰期11/22/202231药动学和TDM等量等间隔(等量等间隔(t1/2)多次给药多次给药血中积累药物血中积累药物 t1/2数 一次给药 血中总药量 剩余量 1 50%A0 50%A0 2 25%A0 75%A0 3 12.5%A0 87.5%A0 4 6.25%A0 93.8%A0 5 3.13%A0 96.9%A0 6 1.56%A0 98.4%A0 7 0.78%A0 99.2%A011/22/202232药动学和TDM等量等间隔多次给药等量等间隔多次给药n等量等间隔多次给药,若每天给药总量不变,增加给药次数可使血药浓度峰值和谷值的波动减小,反之也然。n等量等间隔多次给药后所达到的Css与给药剂量成正比。n恒速静脉滴注给药,血药浓度不产生波动。n按一个1/2间隔给药,首剂加倍可使血药浓度立刻达到Css。11/22/202233药动学和TDM反映消除的参数:反映消除的参数:CL(总清除率总清除率)n单位时间内有多少毫升血中的药物被清除n正确估算药物从体内消除速度的唯一参数nCL=KeVd(一室模型)niv CL=D/AUCniv gtt CL=k0/Css (k0为输注速度)nnv F=100%时,类似iv gtt n附:尿排率n24h(48h)尿中原型药物排出累加曲线,尿排总量占给药总量的百分率(尿排率)n尿排率过大者,肾功不佳时应注意减量或延时n尿排率过小者,提示代谢为主,肝功不佳时慎用11/22/202234药动学和TDMCL(总清除率总清除率)的应用的应用nCL:清除率是设计合理的长期给药方案时的最重要药代动力学参数。n临床通常要求稳态血药浓度维持在已知的有效治疗浓度范围。n药物的清除和给药速度相等时,稳态浓度就可达到。n假设生物利用度完全:K0(给药速度给药速度)=CL Css11/22/202235药动学和TDM统计矩参数统计矩参数n特点:与房室模型无关;需符合线性动力学nMRT为体内平均驻留时间,类似于t1/2,为给药剂量消除63.2%的时间nVRT为MRT的方差n零阶矩:AUC=cdt (积分t均为0)n一阶矩:MRT=tcdt/cdt=AUMC/AUCn二阶矩:VRT=t2cdt/cdtniv t1/2=0.693MRTivnnv MAT=MRTim MRTivnKa=1/MATnt1/2=0.693MAT11/22/202236药动学和TDM药动学参数的单位药动学参数的单位t1/2,Tmax,Tp,MRT hKa,Ke,K10,K12,K21,K13,K311/hVRTh2AUCmg/LhCLL/h,L/h/kgVd,Vc,V1,VssL,L/kgC,C0,Css,Cav,Cmax,Cpmg/LF%Vm,Kmmg/h11/22/202237药动学和TDM药动学研究主要结果与报告药动学研究主要结果与报告nC-t曲线与lnc-t曲线n房室数,线性与非线性n血样主要参数及其不同剂量参数间比较 静注:C0,t1/2,Vd,CL,AUC静滴:t1/2,CL,Cav,AUCss,DF非静注:t1/2,Cmax,Cp,Tmax,Tp,Ka,Vd,CL统计矩参数:AUC,MRT,VRT非线性动力学:Vm,Kmn尿样 排出累加曲线尿排总量,尿排率n个体差异AUC,Vd及t1/2的变异系数大于50%者,临床用药时应注意剂量调控11/22/202238药动学和TDM生物利用度和生物等效性评价11/22/202239药动学和TDM 生物利用度:生物利用度:Fn指制剂中药物被吸收进入体循环的速度与程度。n用药剂量相同绝对F=AUC口服/AUC静注100%相对F=AUC试/AUC标100%n用药剂量不同绝对F=(D静注 AUC口服)/(D口服 AUC静注)100%相对F=(D标 AUC试)/(D试 AUC标)100%11/22/202240药动学和TDM几个概念的区别几个概念的区别n药剂等效性n生物等效性n生物利用度11/22/202241药动学和TDM药剂等效性药剂等效性(Pharmaceutical equivalence)n同一药物相同剂量制成同一剂型,在质量评价指标符合规定标准时所具有的质量性质称药剂等效性。药剂等效性是药物制剂质量的基本要求。药剂等效并不等于生物学等效。11/22/202242药动学和TDM生物等效性(生物等效性(Bioequivalence)n生物等效性指药物临床效应的一致性。临床效应:药物治疗效果与毒副反应。药物临床试验评价方法:生物等效性试验11/22/202243药动学和TDM生物利用度测定(生物等效性评价)的药生物利用度测定(生物等效性评价)的药物动力学基础物动力学基础n药物效应与血液药物浓度n生物利用度评价的常用药物动力学参数n影响药物生物利用度的因素11/22/202244药动学和TDM影响生物利用度的因素影响生物利用度的因素n剂型因素n生物学因素n临床给药方法11/22/202245药动学和TDM生物利用度评价的常用药动学参数生物利用度评价的常用药动学参数n单剂量给药时生物利用度评价的主要药动学参数AUC0、AUC0t Cmax tmax 等。11/22/202246药动学和TDM生物利用度的测定生物利用度的测定n常规的药动学研究试验设计 GCP要求 受试药物的要求 受试者的选择 给药剂量确定与给药方法 药时曲线的数据测定11/22/202247药动学和TDM生物等效性评价的数据处理生物等效性评价的数据处理n数据的权重n室模型及其选择n动力学参数的获取与解释n试验结果的统计分析11/22/202248药动学和TDM室模型及其选择室模型及其选择 一室模型 静脉注射给药:c=c0e-kt 静脉滴注给药:c=k0/kv(1-e-kt)血管外给药:11/22/202249药动学和TDM室模型及其选择室模型及其选择二室模型 静脉注射给药:c=Ae-t Be-t 血管外给药:c=A1e-tA2e-tA3e-kat非线性药物体内浓度变化规律(米氏方程)-dC/dt=VmC/(Km+C)Vm:理论上的体内药物最大消除速度 Km:米氏常数。消除速度为1/2 Vm时的血药浓度11/22/202250药动学和TDM室模型及其选择室模型及其选择n非室模型简介零阶矩 S0:AUC0 一阶矩 MRT:平均驻留时间。药物从体内消除剂量的63.2%所需时间。二阶矩 VRT:平均驻留时间的方差。11/22/202251药动学和TDM 动力学参数的获取与解释动力学参数的获取与解释n参数的获取单次给药iv给药:t1/2()、t1/2()、K、V、Cl、AUC0 等;po给药:Ka、t1/2、Cl、Cmax、tmax、V、AUC0等;多次给药 t1/2、CL、AUCss及DF等。非线性过程以米氏方程表达,应提供Vm、Km。n参数的解释统计分析11/22/202252药动学和TDMPart II治疗药物监测和给药方案的制定治疗药物监测和给药方案的制定11/22/202253药动学和TDM治疗药物监测治疗药物监测 治疗药物监测 (Therapeutic Drug Monitoring,简称TDM)应用药动学原理,应用一定的分析技术,测定血液或其它体液中的药物,研究药物浓度与疗效和毒性的关系,设计或调整给药方案。11/22/202254药动学和TDM一、常规进行血药浓度监测的药物一、常规进行血药浓度监测的药物 临床实践中常规进行TDM的药物的特点n治疗指数低,安全范围窄,治疗浓度范围与中毒浓度很接近,如地高辛。n药物无一明显的、可观察的治疗终点或指标,无及时的、易观察的、可预知疗效的临床指标去调整剂量,如抗癫痫药物。n剂量、药物作用之间的关系不可知,同一剂量,不同患者可出现有效、无效、中毒等不同反应,如苯妥英。n药物中毒与无效时均危险,如抗排异药物。n药物血药浓度与临床作用、中毒之间有一个较好的关系。nTDM实验室可较快的提供血药浓度结果且费用低。11/22/202255药动学和TDM二、常规二、常规TDM药物的血药浓度有效范围和药物的血药浓度有效范围和TDM取样时间取样时间(一)一些常规进行TDM的药物的有效血药浓度范围和取样时间 11/22/202256药动学和TDM二、常规二、常规TDM药物的血药浓度有效范围和药物的血药浓度有效范围和TDM取样时间取样时间(一)一些常规进行TDM的药物的有效血药浓度范围和取样时间11/22/202257药动学和TDM二、常规二、常规TDM药物的血药浓度有效范围和药物的血药浓度有效范围和TDM取样时间取样时间(一)一些常规进行TDM的药物的有效血药浓度范围和取样时间11/22/202258药动学和TDM二、常规二、常规TDM药物的血药浓度有效范围和药物的血药浓度有效范围和TDM取样时间取样时间(二)其它药物的参考有效血药浓度范围 11/22/202259药动学和TDM二、常规二、常规TDM药物的血药浓度有效范围和药物的血药浓度有效范围和TDM取样时间取样时间(二)其它药物的参考有效血药浓度范围11/22/202260药动学和TDM二、常规二、常规TDM药物的血药浓度有效范围和药物的血药浓度有效范围和TDM取样时间取样时间(二)其它药物的参考有效血药浓度范围11/22/202261药动学和TDM第二节第二节 TDM的一般要求的一般要求 一、严格把握TDM适应症,避免不必要的血药浓度测定 n检查并熟悉患者接受的药物治疗。n了解监测药物治疗效果、中毒表现与血清浓度之间的关系 n思考患者有无监测血药浓度的适应征或原因 n熟悉患者用药后哪些具体因素将影响监测药物的药动学、药效学 n熟悉监测药物的药动学知识 n确定患者的具体给药剂量和给药途径 n确定患者的给药时间,向医师提供初步用药建议,并作出相关解释 n确定取样时间,及时送检样本 n估计可能干扰血药浓度测定结果准确性的因素 n获得血药浓度测定结果后,运用药动学、药效学等知识,结合药物实际作用、患者临床表现分析、解释血药浓度 n利用血药浓度结果,向医师提供给药方案的进一步建议 n列出观察、评估治疗效果的指标,告诉医师再次测定血药浓度的时机11/22/202262药动学和TDM第二节第二节 TDM的一般要求的一般要求二、快速提供准确的血药浓度测定结果 测定结果除应准确外,结果报告速度应该尽可能快药师在发送报告的同时,应该利用血药浓度结果,为临床提供专业服务。11/22/202263药动学和TDM第二节第二节 TDM的一般要求的一般要求三、直接面对临床开展TDM工作 1面对临床开展TDM工作的基本内容 TDM药师深入临床开展工作时,应完成核查取样时间,向医师报告血药浓度测定结果,完成其他必要的处理(如收集解释血药浓度结果相关的信息)等基本工作。若不能保证正确的取得分析样本和可靠的取样时间,血药浓度值的解释是不可能的。TDM申请表是收集用药方法、末次给药时间、取样时间、监测目的等情况的良好载体形式,其他影响血药浓度解释的因素,如患者重要脏器功能、合并用药等情况也应在申请表上填写。11/22/202264药动学和TDM第二节第二节 TDM的一般要求的一般要求2向临床提供TDM咨询服务 TDM咨询服务可以从血药浓度解释开始。基本的咨询工作包括监测药物正确的取样时间、治疗浓度范围、潜在中毒浓度范围、药动学参数、影响药动学、药效学的病理生理因素和测定结果的准确性等。为了保证TDM工作质量,药师需要对患者情况全面了解,然后协助医师制订一个治疗计划,工作内容见下。11/22/202265药动学和TDM第二节第二节 TDM的一般要求的一般要求n1)了解患者病情和用药情况 了解患者疾病过程和详细用药情况,这是血药浓度解释、利用的前提和基础,着重了解患者的病理生理状态、准确的用药方法和用药时间、可能发生药物相互作用的其他药物,最好建立患者药历。n2)解释血药浓度数据 根据患者当前血药浓度提供的信息,解释血药浓度与药物作用、毒性之间的关系,解释患者肝、肾等脏器功能对药动学的影响,利用血药浓度和药动学参数,设计个体化给药方案。n3)向医师提供用药建议 用药建议内容包括:给药剂量和剂型;给药间隔;预期达到的血药浓度;调整给药方法后患者可能出现的临床变化;提出建议的理论基础及推理过程;需要对患者进行其他方面检查的项目,如肝、肾功能等;药物过量中毒的救治方法。这里需要强调的是,药师提出用药建议不应该只考虑血药浓度和理论预测的结果,应全面考虑患者的具体临床表现和临床检验结果,考虑患者疾病的过程、当前治疗、药物的动力学特点、首要的治疗目标等因素,药师提出用药建议时要非常谨慎。11/22/202266药动学和TDM第二节第二节 TDM的一般要求的一般要求四、具体工作中熟练运用专业技能 n计算时用的假设及公式是否准确、可靠。n计算值正确与否。n血药浓度测定值是否准确(主要是指实验室因素)。n影响药动学的因素考虑是否周全。n哪些因素干扰测定(主要是指患者、合并用药的影响因素)。n剂量与给药时间、取样时间是否准确或者正确。n患者是否按医嘱服药。11/22/202267药动学和TDM给药方案的设计11/22/202268药动学和TDM给药方案设计的药动学基础给药方案设计的药动学基础n根据平均稳态血药浓度 计算给药剂量X0 X0 CssKVF CssClF11/22/202269药动学和TDM给药方案设计的药动学基础给药方案设计的药动学基础n根据稳态时最大血药浓度 与最小血药浓度 设计给药方案 静脉注射给药:安全有效剂量 X0()V 安全剂量 X0 V(1-e-k)有效剂量 X0 V(1-e-k)e-k 11/22/202270药动学和TDM给药方案设计的药动学基础给药方案设计的药动学基础n根根据据稳稳态态时时最最大大血血药药浓浓度度 与与最最小小血血药药浓度浓度 设计给药方案设计给药方案 (2.303/K)lg()-(2.303/K)lg(1-X0V )(2.303/K)lg(1X0V )11/22/202271药动学和TDM给药方案设计的药动学基础给药方案设计的药动学基础n根根据据稳稳态态时时最最大大血血药药浓浓度度 与与最最小小血血药浓度药浓度 设计给药方案设计给药方案 血管外给药:血管外给药:X X0 0 V V(1-e1-e-k-k)FeFe-ktm-ktm X X0 0 V(Ka V(KaK)(1-eK)(1-e-k-k)FKaeFKae-k-k tmtm(2.303/K)lg(2.303/K)lg()11/22/202272药动学和TDM给药方案设计的药动学基础给药方案设计的药动学基础n根据稳态时血药浓度 设计静脉滴注给药方案 =K0/KV11/22/202273药动学和TDM实际应用中的给药方案实际应用中的给药方案nt1/2与给药方案nt1/2小于30min TI低(肝素)采用静脉输注 TI高(青霉素)6-8小时给药一次nt1/2在0.58小时之间,主要考虑TI和给药方便 TI低:每个T1/2或更短的时间给药一次,必要时静输注 TI高:每个T1/2或更长时间间隔给药n t1/2在824小时:每隔一个T1/2给药一次,必要时首剂加倍。n t1/224小时 一天一次,必要时首剂加倍。11/22/202274药动学和TDM根据药物分布性质作剂量调整根据药物分布性质作剂量调整n按mg/kg进行剂量调整n按体表面积进行剂量调整 一般的,药物的Vd与体表面积成正比 小儿剂量(体表面积/1.7)成人剂量 体表面积0.0061身高0.0128体重0.152911/22/202275药动学和TDM根据药物体内处置变化作剂量调整根据药物体内处置变化作剂量调整n病理状态下,药物处置(生物转化和排泄)可发生变化肝功能异常者肾功能异常者11/22/202276药动学和TDM个体化给药方案的制定个体化给药方案的制定确定靶浓度(确定靶浓度(CpCp)找出找出CLCL和和VdVd的正常值的正常值 校正校正CLCL和和VdVd(根据体重、肝肾功能等)(根据体重、肝肾功能等)确定负荷量(确定负荷量(DLDL)和维持量()和维持量(DMDM)(DL=Cp.Vd/F;DM=DL(DL=Cp.Vd/F;DM=DL(1-e-(1-e-),R=Cp,R=Cp CL)CL)观察患者的血药浓度和效应观察患者的血药浓度和效应 根据血药浓度修正根据血药浓度修正CLCL和和VdVd 调整维持量(调整维持量(DMDM),完善治疗方案),完善治疗方案11/22/202277药动学和TDM例例 题题 68kg68kg患者使用某药,已知该药的患者使用某药,已知该药的F F值为值为100%100%,CpCp为为15 mg/L15 mg/L,CL CL为为0.65 ml/min/kg0.65 ml/min/kg,V Vd d为为0.5 L/kg,0.5 L/kg,该药的治疗窗为该药的治疗窗为10-2010-20mg/Lmg/L问 题n DL 为多少?n 给药速度为多少?n 每隔多少小时给药一次合适?11/22/202278药动学和TDM DL DL=Cp Vd/F W =15 mg/L 0.5 L/kg 68kg =510 mg11/22/202279药动学和TDM 给药速度给药速度 k0=CL Cp W =0.65 ml/min/kg 15 mg/L 68kg =40 mg/h11/22/202280药动学和TDM 给药间隔给药间隔 若每隔12小时给药1次:nCss,max=FD/Vd(1-e-).(=CL/Vd)=1480mg/34L(1-e-)=23.14 mg/LnCss,min=FD e-/Vd(1-e-)=9.03 mg/L11/22/202281药动学和TDM 给药间隔给药间隔 n给药间隔Css,maxCss,minn1223.19.0n820.310.9n618.911.8n417.412.711/22/202282药动学和TDM药物剂量个体化药物剂量个体化n不需剂量个体化:个体差异小、治疗窗宽(OTC)n需要剂量个体化:个体差异大、治疗窗窄(抗高血压药物、地高辛等)11/22/202283药动学和TDM临床评估与血药浓度监测()临床评估与血药浓度监测()A、药物治疗时,可找到可监测的药效学指标,则可根据治疗目标设定或调整给药剂量和速度,如:n抗高血压药n降血糖药 血压血压血糖血糖11/22/202284药动学和TDMB B、不能根据药效学指标来调整给药剂量但量效关系明显:、不能根据药效学指标来调整给药剂量但量效关系明显:如:应用治疗指数小的抗生素治疗严重感染如:应用治疗指数小的抗生素治疗严重感染给药方给药方案案血药血药浓度浓度组组织织器器官官TDM11/22/202285药动学和TDM小小 结结正确诊断正确诊断合理方案合理方案理想疗效理想疗效11/22/202286药动学和TDM此课件下载可自行编辑修改,仅供参考!此课件下载可自行编辑修改,仅供参考!感谢您的支持,我们努力做得更好!谢谢感谢您的支持,我们努力做得更好!谢谢