机械能守恒定律1.ppt
第四节第四节机械能机械能 机械能守恒机械能守恒周璐复习系列课件周璐复习系列课件机械能和能源机械能和能源2021/9/231一、重力势能一、重力势能v如图:物体从高度如图:物体从高度h1h1点下落点下落h2h2点,重力做功点,重力做功为为 W WG G=mgh=mgh1 1-mgh-mgh2 2v据功和能的关系据功和能的关系W WG G等于等于mghmgh的变化。在物理的变化。在物理学中用学中用mghmgh表示重力势能。表示重力势能。vEp=mgh WEp=mgh WG G=E=EP1P1-E-EP2P2即重力做功等于即重力做功等于重力势能的变化的负值。重力势能的变化的负值。h1h21.1.重力势能的概念重力势能的概念:受重力作用的物体具有与它的受重力作用的物体具有与它的高度有关的能称为重力势能高度有关的能称为重力势能.要点要点疑点疑点考考点点2021/9/232要点要点疑点疑点考考点点二、重力做功特点二、重力做功特点1.1.重点做功与路径无关,只与物体的始末重点做功与路径无关,只与物体的始末位置高度差有关位置高度差有关2.2.重力做功的大小:重力做功的大小:W=mghW=mgh3.3.重力做功与重力势能的关系:重力做功与重力势能的关系:W WG G=-E=-Ep p重力做功与重力势能的关系:重力做正功,重力做功与重力势能的关系:重力做正功,重力势能减少重力做负功,重力势能增加。重力势能减少重力做负功,重力势能增加。且重力做功的大小等于重力势能的变化且重力做功的大小等于重力势能的变化。2021/9/233三、弹性势能的概念三、弹性势能的概念 物体由于弹性形变而具有的与它的位置有关的物体由于弹性形变而具有的与它的位置有关的势能称为弹性势能势能称为弹性势能.它的大小与形变有关。它的大小与形变有关。势能又叫位能,是由相互作用的物体的相对位势能又叫位能,是由相互作用的物体的相对位置决定的。置决定的。要点要点疑点疑点考考点点2021/9/234四、机械能四、机械能 1.1.物体的动能和势能之和称为物体的机物体的动能和势能之和称为物体的机械能械能.2.2.重力势能是物体和地球共有的,重力重力势能是物体和地球共有的,重力势能的值与零势能面的选择有关,物体在势能的值与零势能面的选择有关,物体在零势能面之上的是正值,在其下的是负值零势能面之上的是正值,在其下的是负值但是重力势能差值与零势能面选择无关但是重力势能差值与零势能面选择无关.要点要点疑点疑点考考点点2021/9/235五、机械能守恒定律五、机械能守恒定律 1.1.在只有重力在只有重力(及系统内弹簧的弹力及系统内弹簧的弹力)做功做功的情形下物体的动能和重力势能的情形下物体的动能和重力势能(及弹性势能及弹性势能)发生相互转化,但机械能的总量保持不变,发生相互转化,但机械能的总量保持不变,这个结论叫做机械能守恒定律这个结论叫做机械能守恒定律 即即:E:Ek k+E+EP P=E=Ek k+E+EP P 或或EEk k=E=EP P或或EEA A增增=E=EB B减减要点要点疑点疑点考考点点思考:你能证明机械能守恒吗?如何证明?思考:你能证明机械能守恒吗?如何证明?2021/9/2362.2.机械能是否守恒的判断机械能是否守恒的判断.(1)(1)利用机械能的定义:若物体在水平面利用机械能的定义:若物体在水平面上匀速运动,其动、势能均不变,其机械上匀速运动,其动、势能均不变,其机械能守恒,若一个物体沿斜面匀速下滑,其能守恒,若一个物体沿斜面匀速下滑,其动能不变,重力势能减少,其机械能减少,动能不变,重力势能减少,其机械能减少,此类判断比较直观,但仅能判断难度不大此类判断比较直观,但仅能判断难度不大的判断题的判断题.要点要点疑点疑点考考点点2021/9/237 (2)(2)利用机械能守恒的条件,即系统只有重力利用机械能守恒的条件,即系统只有重力(和弹力和弹力)做功,如果符合上述条件,物体的机械做功,如果符合上述条件,物体的机械能守恒能守恒(此弹力仅为弹簧的弹力此弹力仅为弹簧的弹力)(3)(3)除重力除重力(或弹力或弹力)做功外,还有其他的力做功,做功外,还有其他的力做功,若其他力做功之和为若其他力做功之和为0 0,物体的机械能守恒;反之,物体的机械能守恒;反之,物体的机械能将不守恒物体的机械能将不守恒.(4)(4)对某一系统,物体间只有动能和重力势能及对某一系统,物体间只有动能和重力势能及弹性势能相互转化,系统跟外界没有发生机械能弹性势能相互转化,系统跟外界没有发生机械能的传递,机械能也没有转变成其他形式的能的传递,机械能也没有转变成其他形式的能(如没如没有内能产生有内能产生),则系统的机械能守恒,则系统的机械能守恒.要点要点疑点疑点考考点点2021/9/2383.3.应用机械能守恒定律解题的基本步骤应用机械能守恒定律解题的基本步骤.(1)(1)根据题意,选取研究对象根据题意,选取研究对象(物体或系统物体或系统).).(2)(2)明确研究对象的运动过程,分析对象在过程明确研究对象的运动过程,分析对象在过程中的受力情况,弄清各力做功情况,判断是否符中的受力情况,弄清各力做功情况,判断是否符合机械能守恒的条件合机械能守恒的条件.(3)(3)恰当地选取参考平面,确定研究对象在过程恰当地选取参考平面,确定研究对象在过程中的起始状态和末始状态的机械能中的起始状态和末始状态的机械能(包括动能和重包括动能和重力势能力势能).).(4)(4)根据机械能守恒定律列方程,进行求解根据机械能守恒定律列方程,进行求解.要点要点疑点疑点考考点点2021/9/239课课 前前 热热 身身1.1.下列运动物体,机械能守恒的有下列运动物体,机械能守恒的有()()A.A.物体沿斜面匀速下滑物体沿斜面匀速下滑B.B.物体沿竖直平面内的圆形轨道做匀速圆物体沿竖直平面内的圆形轨道做匀速圆周运动周运动C.C.跳伞运动员在空中匀速下落跳伞运动员在空中匀速下落D.D.沿光滑曲面自由下滑的木块沿光滑曲面自由下滑的木块D2021/9/23102 2、在下列运动过程中、在下列运动过程中,物体的机械能守恒的是物体的机械能守恒的是:A.A.物体沿圆弧匀速下滑过程中物体沿圆弧匀速下滑过程中;B.B.物体沿粗糙曲面自由下滑过程中物体沿粗糙曲面自由下滑过程中;C.C.人造卫星沿椭圆轨道绕地球运动的过程中人造卫星沿椭圆轨道绕地球运动的过程中;D.D.圆锥摆的摆球在水平面内做匀速圆周运动的圆锥摆的摆球在水平面内做匀速圆周运动的过程中过程中.课课 前前 热热 身身CD2021/9/23113 3、在下列情况中、在下列情况中,物体的机械能守恒的是物体的机械能守恒的是:A.A.手榴弹在空中飞行过程中手榴弹在空中飞行过程中(不计空气阻力不计空气阻力););B.B.子弹射入放在光滑水平面上的木块的过程中子弹射入放在光滑水平面上的木块的过程中;C.C.细绳的一端系一小球细绳的一端系一小球,绳的另一端固定绳的另一端固定,使小球在使小球在竖直平面内做圆周运动竖直平面内做圆周运动;D.D.小球落到竖直放置的弹簧上之后运动过程中的小小球落到竖直放置的弹簧上之后运动过程中的小球球;方法方法:用做功来判定用做功来判定(一般对一个物体一般对一个物体),),用能量转用能量转换来判定换来判定(常用于系统常用于系统)课课 前前 热热 身身ACD2021/9/2312 4 4、一根长为、一根长为2m,2m,重力为重力为200N200N的均匀木杆放在水平地面的均匀木杆放在水平地面上上,现将它的一端从地面提高现将它的一端从地面提高0.5m,0.5m,另一端仍搁在地面另一端仍搁在地面上上,则至少所需做的功为则至少所需做的功为(g(g取取10m/s10m/s2 2):):A.400J;B.200J;A.400J;B.200J;C.100J;C.100J;D.50J.D.50J.课课 前前 热热 身身D2021/9/23135.5.关于重力势能的说法,正确的是关于重力势能的说法,正确的是()()A.A.重力势能等于重力势能等于0 0的物体,不可能对别的物的物体,不可能对别的物体做功体做功B.B.在地平面下方的物体,它具有的重力势能在地平面下方的物体,它具有的重力势能一定大于一定大于0 0C.C.重力势能减少,重力一定对物体做正功重力势能减少,重力一定对物体做正功D.D.重力势能增加,重力一定对物体做正功重力势能增加,重力一定对物体做正功课课 前前 热热 身身2021/9/23146.6.当重力对物体做正功时,物体的当重力对物体做正功时,物体的()()A.A.重力势能一定减少,动能一定增加重力势能一定减少,动能一定增加B.B.重力势能一定增加,动能一定减少重力势能一定增加,动能一定减少C.C.重力势能一定减少,动能不一定增加重力势能一定减少,动能不一定增加D.D.重力势能不一定减少,动能也不一定重力势能不一定减少,动能也不一定增加增加C课课 前前 热热 身身2021/9/23157.7.质量为质量为2kg2kg的物体,自的物体,自30m30m高处自由下高处自由下落落2s2s时,物体的重力势能为时,物体的重力势能为(g(g取取10m/s10m/s2 2,取地面为,取地面为0 0势能面势能面)()()A.200J B.400J A.200J B.400J C.600J D.800J C.600J D.800JA课课 前前 热热 身身2021/9/23168.8.在楼上以相同的速率同时抛出质量相同的在楼上以相同的速率同时抛出质量相同的三个小球,并落在同一水平面上,三个小球,并落在同一水平面上,A A球上抛,球上抛,B B球平抛,球平抛,C C球竖直下抛,则三球着地时的球竖直下抛,则三球着地时的()A.A.动能相同动能相同 B.B.动量相同动量相同 C.C.机械能不同机械能不同 D.D.速率不相同速率不相同A课课 前前 热热 身身2021/9/23179.9.从高为从高为5m5m的平台上斜抛出一个小球,初的平台上斜抛出一个小球,初速度是速度是10m/s10m/s,落地时小球的速度大小为多,落地时小球的速度大小为多少少?(?(不计空气阻力,不计空气阻力,g g取取10m/s10m/s2 2)【答案】【答案】m/s m/s课课 前前 热热 身身2021/9/2318【例【例1 1】若要质量为若要质量为m m小球能小球能从从C C端出来,初速度端出来,初速度v v0 0至少应至少应多大?(忽略一切阻力)多大?(忽略一切阻力)v v0 0R RC CA AB B解解:取小球为研究对象,设小球取小球为研究对象,设小球刚好刚好刚好刚好能从能从C C端出来,则在最高点端出来,则在最高点时重力完全提供向心力:时重力完全提供向心力:小球从小球从A A到到C C过程,只有重力做功,过程,只有重力做功,取取ABAB所在水平面为零势面,由所在水平面为零势面,由机机机机械能守恒械能守恒械能守恒械能守恒:由以上两式得:由以上两式得:即若要小球能从即若要小球能从C C端出来,初速度端出来,初速度v v0 0至少为至少为 。能力能力思维思维方方法法2021/9/2319 若要质量为若要质量为m m小球能从小球能从C C端出来,初速度端出来,初速度v v0 0至少应多至少应多大?(忽略一切阻力)大?(忽略一切阻力)解解:取小球为研究对象,设小取小球为研究对象,设小球球刚好刚好能从能从C C端出来,则在最端出来,则在最高点时速度为高点时速度为0 0:小球从小球从A A到到C C过程,只有重力做功,取过程,只有重力做功,取ABAB所在所在水平面为零势面,由水平面为零势面,由机械能守恒机械能守恒:即若要小球能从即若要小球能从C C端出来,初速度端出来,初速度v v0 0至少为至少为 由上式得:由上式得:2021/9/2320【例例2 2】如如图图所所示示,以以速速度度v v0 0沿沿光光滑滑地地面面滑滑行行的的小小球球,上上升到顶部水平的跳板上后由跳板飞出。升到顶部水平的跳板上后由跳板飞出。(1 1)当跳板高度为)当跳板高度为h h时,小球飞行的距离时,小球飞行的距离s s是多少?是多少?(2 2)若若v v0 0=12m/s=12m/s,h h为为何何值值,飞飞行行的的距距离离s s最最大大?(提提示示:运用数学二次方程求最大值的方法求解,运用数学二次方程求最大值的方法求解,g=10m/sg=10m/s2 2)AB解解:(1 1)小球从小球从A A到到B B过程,只有重力做功,取过程,只有重力做功,取A A点所在水平面为零势面,由点所在水平面为零势面,由机械能守恒机械能守恒机械能守恒机械能守恒:小球到达小球到达 B B点后做平抛运动:点后做平抛运动:由以上两式得:由以上两式得:(2 2)当)当v v0 0=12m/s=12m/s 时:时:,则当则当h h3.6m3.6m时,时,S Smaxmax7.2m.7.2m.2021/9/2321v 分析和解答分析和解答 此问用竖直上抛知识可解决此问用竖直上抛知识可解决,但由于但由于物体在空中只有重力作功物体在空中只有重力作功,故机械能守恒故机械能守恒,所以选用所以选用机械能守恒定律解题机械能守恒定律解题.v以地面为参考面以地面为参考面,则则E E1 1=mv=mv2 2/2;/2;在最高点动能为零在最高点动能为零,故故E E2 2=mgh.=mgh.v由由E E1 1=E=E2 2得得mvmv2 2/2=mgh h=5(/2=mgh h=5(米米)【例【例3】以以10m/s10m/s的速度将质量是的速度将质量是m m的物体竖直向上的物体竖直向上抛出抛出,若空气阻力忽略若空气阻力忽略,g=10m/s,g=10m/s2 2则则:物体上升物体上升的最大高度是多少的最大高度是多少?上升过程在何处重力势能上升过程在何处重力势能和动能相等和动能相等?2021/9/2322v初态设在地面初态设在地面:E:E1 1=mvmv2 2/2/2;终态设在终态设在h h1 1高处高处:vE E2 2=mgh+mv=mgh+mv1 12 2/2=2mgh/2=2mgh1 1.v因为机械能守恒因为机械能守恒:E:E1 1=E=E2 2,mv2/2=2mgh,mv2/2=2mgh1 1.hh1 1=V=V2 2/4g=2.5(m)./4g=2.5(m).v可见可见,用机械能守恒定律解题关键是正确找用机械能守恒定律解题关键是正确找出初、末态的机械能出初、末态的机械能(包括动能和势能包括动能和势能).).能力能力思维思维方方法法2021/9/2323能力能力思维思维方方法法【例【例4 4】玩具火箭内充满压缩空气,在发射的时候利用压玩具火箭内充满压缩空气,在发射的时候利用压缩空气从火箭的尾部射出笨重的箭身,而使火箭头向前缩空气从火箭的尾部射出笨重的箭身,而使火箭头向前飞行飞行假如在竖直向上发射的时候,箭头能上升的度为假如在竖直向上发射的时候,箭头能上升的度为h=16mh=16m现改为另一种发射方式:首先让火箭沿半径为现改为另一种发射方式:首先让火箭沿半径为R=4mR=4m的半圆形轨道滑行的半圆形轨道滑行(如图所示如图所示),在达到轨道的最低,在达到轨道的最低点点A A时时(此时火箭具有最大的滑行速度此时火箭具有最大的滑行速度),再开动发动机发,再开动发动机发射火箭,试问按这种方式发射的火箭头能上升多高射火箭,试问按这种方式发射的火箭头能上升多高?(?(不不计摩擦和空气阻力计摩擦和空气阻力)2021/9/2324【解析】【解析】设火箭发射过程结束火箭头所获得设火箭发射过程结束火箭头所获得的初速度为的初速度为v v0 0,火箭头的质量为,火箭头的质量为m m当火箭当火箭头上升时只受重力作用头上升时只受重力作用(因空气阻力不计因空气阻力不计),所以机械能守恒,有关系式所以机械能守恒,有关系式:1/2mv 1/2mv2 20 0=mgh=mgh从而得到从而得到v v0 0=改用后一种方式发射时,设火箭沿光滑半改用后一种方式发射时,设火箭沿光滑半圆形轨道滑到最低点圆形轨道滑到最低点A A时的速率为时的速率为v vA A,同理由,同理由机械守恒定律可得机械守恒定律可得:v:vA A=能力能力思维思维方方法法2021/9/2325 若待火箭滑到最低点若待火箭滑到最低点A A的时刻,再开动发动机的时刻,再开动发动机发射火箭;发射结束时火箭对地的速率为:发射火箭;发射结束时火箭对地的速率为:v=v v=vA A+v+v0 0 设火箭设火箭A A相对于点相对于点A A上升的最大高度为上升的最大高度为H H,由机,由机械能守恒得械能守恒得:1/2mv:1/2mv2 2=mgH =mgH 所以所以:H=vH=v2 2/2g=(v/2g=(vA A+v+v0 0)2 2/2g=(v/2g=(vA A2 2+v+v2 20 0+2v+2vA Av v0 0)/2g=24m)/2g=24m能力能力思维思维方方法法2021/9/2326【例【例5 5】一条长为一条长为L L的均匀链条,放在光滑水的均匀链条,放在光滑水平桌面上,链条的一半垂于桌边,如图所示平桌面上,链条的一半垂于桌边,如图所示现由静止开始使链条自由滑落,当它全部现由静止开始使链条自由滑落,当它全部脱离桌面时的速度为多大脱离桌面时的速度为多大?能力能力思维思维方方法法2021/9/2327【解析】【解析】因桌面光滑,链条虽受桌面的支持力,因桌面光滑,链条虽受桌面的支持力,但支持力对链条不做功,在链条下滑过程中只有但支持力对链条不做功,在链条下滑过程中只有重力对链条做功,故链条下滑过程中机械能守恒重力对链条做功,故链条下滑过程中机械能守恒 设链条总质量为设链条总质量为m m,由于链条均匀,因此对链,由于链条均匀,因此对链条所研究部分可认为其重心在它的几何中心条所研究部分可认为其重心在它的几何中心先先取桌面为零势能面,则初、末状态的机械能分别取桌面为零势能面,则初、末状态的机械能分别为:为:能力能力思维思维方方法法2021/9/2328初态:初态:E Ek0k0=0,E=0,Ep0p0=-1/2(mgL/4)=-1/2(mgL/4)末态:末态:E Ektkt=1/2mv=1/2mv2 22 2,E Eptpt=-mgL/2=-mgL/2根据机械能守恒定律有:根据机械能守恒定律有:0-1/2(mgL/4)=1/2mv0-1/2(mgL/4)=1/2mv2 22 2-mgL/2-mgL/2解得解得v=v=能力能力思维思维方方法法2021/9/2329【例【例6 6】长为长为l l的轻绳,一端系一质量为的轻绳,一端系一质量为m m的小球,的小球,一端固定于一端固定于O O点点.在在O O点正下方距点正下方距O O点点h h处有一枚钉子处有一枚钉子C C现将绳拉到水平位置,如图所示现将绳拉到水平位置,如图所示.将小球由静止将小球由静止释放,欲使小球到达最低点后以释放,欲使小球到达最低点后以C C为圆心做完整的为圆心做完整的圆周运动,试确定圆周运动,试确定h h应满足的条件应满足的条件.能力能力思维思维方方法法2021/9/2330【解析】【解析】小球在运动过程中,受重力和绳的小球在运动过程中,受重力和绳的拉力作用,由于绳的拉力时刻与球的速度垂拉力作用,由于绳的拉力时刻与球的速度垂直,所以绳的拉力不对小球做功,即小球运直,所以绳的拉力不对小球做功,即小球运动过程中,只有重力对其做功,机械能守恒动过程中,只有重力对其做功,机械能守恒 显然,显然,h h越小,越小,C C的位置越高,小球在以的位置越高,小球在以C C为圆心做圆周运动时,经过为圆心做圆周运动时,经过C C正上方的速度正上方的速度v v越小,由于越小,由于v v存在极小值,故存在极小值,故h h存在极小值存在极小值.能力能力思维思维方方法法2021/9/2331 设小球在设小球在C C点正上方时,速度为点正上方时,速度为v v,分析此时小球受,分析此时小球受力情况如图,则力情况如图,则:T+mg=mv:T+mg=mv2 2/(l-h)/(l-h)T=mv T=mv2 2/(l-h)-g/(l-h)-g,由,由T0T0解得解得v v2 2g(l-h)g(l-h)又由以上分析,小球运动过程中机械能守恒,小球又由以上分析,小球运动过程中机械能守恒,小球位于位于C C点正上方所在水平面为零势面,则有点正上方所在水平面为零势面,则有 mg mgl-2(l-h)l-2(l-h)=1/2mv=1/2mv2 2-0-0,v v2 2=2g(2h-l)=2g(2h-l)联立联立、,解得,解得2g(2h-l)g(l-h)2g(2h-l)g(l-h),h3l/5 h3l/5故故h h应满足的条件即为应满足的条件即为h3l/5.h3l/5.能力能力思维思维方方法法2021/9/2332【解题回顾】【解题回顾】本题考查了机械能守恒定律及本题考查了机械能守恒定律及圆周运动的知识,根据机械能守恒定律,圆周运动的知识,根据机械能守恒定律,C C的位置越高即的位置越高即h h越小,小球在越小,小球在O O点正上方速率点正上方速率越小,而其最小速度应保证小球能满足重力越小,而其最小速度应保证小球能满足重力刚好提供向心力刚好提供向心力.能力能力思维思维方方法法2021/9/2333延伸延伸拓展拓展【例【例7 7】如图所示,半径为如图所示,半径为r r,质,质量不计的圆盘盘面与地面相垂直,量不计的圆盘盘面与地面相垂直,圆心处有一个垂直盘面的光滑水圆心处有一个垂直盘面的光滑水平固定轴平固定轴O O,在圆盘的最右边缘,在圆盘的最右边缘固定一个质量为固定一个质量为m m的小球的小球A A,在,在O O点的正下方离点的正下方离O O点点r/2r/2处固定一个处固定一个质量也为质量也为m m的小球的小球B.B.放开盘让其自由转动,问:放开盘让其自由转动,问:(1)(1)当当A A球转到最球转到最低点时,两小球的重力势能之和减少了多少低点时,两小球的重力势能之和减少了多少?(2)A(2)A球转到最低点时的线速度是多少球转到最低点时的线速度是多少?2021/9/2334【解析】【解析】(1)1)以通过以通过O O的水平面为零势能面,的水平面为零势能面,开始时和开始时和A A球转到最低点时两球重力势能球转到最低点时两球重力势能之和分别为之和分别为E EP1P1=E=EPAPA+E+EPBPB=0+E=0+EPBPB=-mg(r/2),=-mg(r/2),E EP2P2=EP=EPA A+EP+EPB B=-mgr+0=-mgr=-mgr+0=-mgr两球重力势能之和减少两球重力势能之和减少EEp p=E=EP1P1-E-EP2P2=-1/2mgr-(-mgr)=1/2mgr.=-1/2mgr-(-mgr)=1/2mgr.延伸延伸拓展拓展2021/9/2335(2)(2)由于圆盘转动过程中,只有两球重力做功,机械能由于圆盘转动过程中,只有两球重力做功,机械能守恒守恒.因此,两球重力势能之和的减少一定等于两球动因此,两球重力势能之和的减少一定等于两球动能的增加能的增加.设设A A球转到最低点时,球转到最低点时,A A、B B两球的速度分别两球的速度分别为为v v、v v,则,则:1/2mgr=1/2mv 1/2mgr=1/2mv2 2+1/2mv+1/2mv2 2 因因A A、B B两球固定在同一个圆盘上,转动过程中的角两球固定在同一个圆盘上,转动过程中的角速度相同,设为速度相同,设为.由由:v:v=r r,v,v=rr/2,/2,得得v v=2v=2v.将将v v=2v=2v,代入上式,得,代入上式,得:1/2mgr=1/2mv 1/2mgr=1/2mv2 2+1/2m(v+1/2m(v/2)/2)2 2,vvA A=延伸延伸拓展拓展2021/9/2336