高二数学选修2 全称量词与存在量词1 课件.ppt
1.4.3 1.4.3 含有一个量词含有一个量词 的命题的否定的命题的否定2021/8/11 星期三1要判定全称命题要判定全称命题“xM,p(x)”“xM,p(x)”是真命题,需要对集合是真命题,需要对集合M M中每中每个元素个元素x,x,证明证明p(x)p(x)成立;如果在集合成立;如果在集合M M中找到一个元素中找到一个元素x x0 0,使得使得p p(x(x0 0)不成立,那么这个全称命题就是假命题不成立,那么这个全称命题就是假命题判断全称命题和特称命题真假判断全称命题和特称命题真假要判定特称命题要判定特称命题“x“x0 0M,p(xM,p(x0 0)”)”是真命题,只需在集是真命题,只需在集合合M M中找到一个元素中找到一个元素x x0 0,使使p(xp(x0 0)成立即可,如果在集合成立即可,如果在集合M M中,使中,使p(x)p(x)成立的元素成立的元素x x不存在,则特称命题是假命题不存在,则特称命题是假命题复习回顾复习回顾常见的全称量词有常见的全称量词有“所有的所有的”“任意一个任意一个”“一切一切”“每一个每一个”“任给任给”“所有的所有的”等等.常见的存在量词有常见的存在量词有“存在一个存在一个”“至少一个至少一个”“有些有些”“有一个有一个”“对某个对某个”“有的有的”等等.2021/8/11 星期三2探究探究x0M,p(x0)x0M,p(x0)x0M,p(x0)3)x0R,x02-2x0+102021/8/11 星期三3 从命题形式上看从命题形式上看,这三个全称命题的否定都这三个全称命题的否定都变成了特称命题变成了特称命题.一般地一般地,对于含有一个量词的全称命题的否对于含有一个量词的全称命题的否定定,有下面的结论有下面的结论:全称命题全称命题p:全称命题的否定是特称命题全称命题的否定是特称命题.它的否定它的否定x0M,p(x0)2021/8/11 星期三4例例3 写出下列全称命题的否定写出下列全称命题的否定:(1)p:所有能被所有能被3整除的整数都是奇数整除的整数都是奇数;(2)p:每一个四边形的四个顶点共圆每一个四边形的四个顶点共圆;2021/8/11 星期三5探究探究否定否定:1)所有实数的绝对值都不是正数所有实数的绝对值都不是正数;2)每一个平行四边形都不是菱形每一个平行四边形都不是菱形;3)x0M,p(x0)x0M,p(x0)x0M,p(x0)3)x0R,x02+102021/8/11 星期三6从命题形式上看从命题形式上看,这三个特称命题的否定都变这三个特称命题的否定都变成了全称命题成了全称命题.一般地一般地,对于含有一个量词的特称命题的否定对于含有一个量词的特称命题的否定,有下面的结论有下面的结论:特称命题特称命题它的否定它的否定从命题形式上看从命题形式上看,这三个特称命题的否定都变这三个特称命题的否定都变成了全称命题成了全称命题.一般地一般地,对于含有一个量词的特称命题的否定对于含有一个量词的特称命题的否定,有下面的结论有下面的结论:特称命题的否定是全称命题.x0M,p(x0)2021/8/11 星期三7例例4 写出下列特称命题的否定写出下列特称命题的否定(1)(2)有的三角形是等边三角形有的三角形是等边三角形;(3)有一个素数含三个正因数有一个素数含三个正因数.P:x0R,x02+2x0+202021/8/11 星期三8P:x0R,x02+2x0+2=02)2021/8/11 星期三9问题问题讨讨论论写出下列命题的非写出下列命题的非(1)p:方程:方程x2-x-6=0的解是的解是x=-2(2)q:四条边相等的四边形是正方形:四条边相等的四边形是正方形(3)r:奇数是质数:奇数是质数解答解答(1)p:方程:方程x2-x-6=0的解不是的解不是x=-2(2)q:四条边相等的四边形不是正方形:四条边相等的四边形不是正方形(3)r:奇数不是质数:奇数不是质数以上解答是否错误,请说明理由以上解答是否错误,请说明理由注:非注:非p叫做命题的否定,但叫做命题的否定,但“非非p”绝不是绝不是“是是”与与“不是不是”的简单的简单 演绎。演绎。因注意命题中是否存在因注意命题中是否存在“全称量词全称量词”或或“特称量词特称量词”2021/8/11 星期三10对全称命题、特称命题不同表述形式的学习对全称命题、特称命题不同表述形式的学习同一个全称命题、特称命题,由于自然语言的不同,同一个全称命题、特称命题,由于自然语言的不同,可以有不同的表述方法。可以有不同的表述方法。命命题题全称命题全称命题特称命题特称命题表表述述方方法法2021/8/11 星期三11小结小结含有一个量词的命题的否定含有一个量词的命题的否定结论:全称命题的否定是特称命题结论:全称命题的否定是特称命题 特称命题的否定是全称命题特称命题的否定是全称命题2021/8/11 星期三12