欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    人教版高一数学 正弦函数、余弦函数的图象1 课件.ppt

    • 资源ID:64001792       资源大小:243KB        全文页数:21页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教版高一数学 正弦函数、余弦函数的图象1 课件.ppt

    1.4 1.4 三角函数的图象与性质三角函数的图象与性质1.4.11.4.1正弦函数、余弦函数的图象正弦函数、余弦函数的图象 2021/8/9 星期一12.2.任意给定一个实数任意给定一个实数x x,对应的正弦值,对应的正弦值(sinxsinx)、余弦值)、余弦值(cosx)(cosx)是否存在?惟一?是否存在?惟一?问题提出问题提出1.1.在单位圆中,角在单位圆中,角的正弦线、余弦线的正弦线、余弦线分别是什么?分别是什么?P P(x x,y y)O Ox xy yMsin=MPcos=OM2021/8/9 星期一24.4.一个函数总具有许多基本性质,要直一个函数总具有许多基本性质,要直观、全面了解正、余弦函数的基本特性,观、全面了解正、余弦函数的基本特性,我们应从哪个方面人手?我们应从哪个方面人手?3.3.设实数设实数x x对应的角的正弦值为对应的角的正弦值为y y,则对,则对应关系应关系y=sinxy=sinx就是一个函数,称为就是一个函数,称为正弦正弦函数函数;同样;同样y=cosxy=cosx也是一个函数,称为也是一个函数,称为余弦函数余弦函数,这两个函数的定义域是什么,这两个函数的定义域是什么?2021/8/9 星期一3正、余弦函数的图象2021/8/9 星期一4知识探究(一):知识探究(一):正弦函数的图象正弦函数的图象 思考思考1 1:作函数图象最原始的方法是什么作函数图象最原始的方法是什么?思考思考2 2:用描点法作正弦函数用描点法作正弦函数y=sinxy=sinx在在00,22内的图象,可取哪些点?内的图象,可取哪些点?思考思考3 3:如何在直角坐标系中比较精确地如何在直角坐标系中比较精确地描出这些点,并画出描出这些点,并画出y=sinxy=sinx在在00,22内的图象?内的图象?2021/8/9 星期一5xy1-1O22思思考考4 4:观观察察函函数数y=sinxy=sinx在在00,22内内的的图图象象,其其形形状状、位位置置、凸凸向向等等有有何何变变化化规律?规律?2021/8/9 星期一6思思考考5 5:在在函函数数y=sinxy=sinx,x0 x0,22的的图象上,起关键作用的点有哪几个?图象上,起关键作用的点有哪几个?x-1O221y y2021/8/9 星期一7思思 考考 6 6:当当 x2x2,4,4,-2-2,0,0,时,时,y=sinxy=sinx的图象如何?的图象如何?y-1xO123456-2-3-4-5-6-2021/8/9 星期一8思思考考7 7:函函数数y=sinxy=sinx,xRxR的的图图象象叫叫做做正正弦曲线弦曲线,正弦曲线的分布有什么特点?,正弦曲线的分布有什么特点?y-1xO123456-2-3-4-5-6-2021/8/9 星期一9思考思考8 8:你能画出函数你能画出函数y=|sinx|y=|sinx|,x0 x0,22的图象吗?的图象吗?y yx xO O122-1-12021/8/9 星期一10知识探究(二):知识探究(二):余弦函数的图象余弦函数的图象 思思考考1 1:观观察察函函数数y=xy=x2 2与与y=(xy=(x1)1)2 2 的的图图象象,你你能能发发现现这这两两个个函函数数的的图图象象有有什什么么内在联系吗?内在联系吗?x xy yo o-1-12021/8/9 星期一11思思考考2 2:一一般般地地,函函数数y=f(xy=f(xa)(aa)(a0)0)的的图图象象是是由由函函数数y=f(x)y=f(x)的的图图象象经经过过怎怎样样的的变换而得到的?变换而得到的?向左平移向左平移a a个单位个单位.思思考考3 3:设设想想由由正正弦弦函函数数的的图图象象作作出出余余弦弦函函数数的的图图象象,那那么么先先要要将将余余弦弦函函数数y=cosxy=cosx转转化化为为正正弦弦函函数数,你你可可以以根根据据哪哪个公式完成这个转化?个公式完成这个转化?2021/8/9 星期一12思考思考4 4:由诱导公式可知,由诱导公式可知,y=cosxy=cosx与与 是是同同一一个个函函数数,如如何何作作函函数数 在在00,22内的图象?内的图象?xy yO221y=sinxy=sinx-1-12021/8/9 星期一13思思考考5 5:函函数数y=cosxy=cosx,x0 x0,22的的图图象象如如何何?其其中中起起关关键键作作用用的的点点有有哪哪几几个个?xy yO221-1-12021/8/9 星期一14思思考考6 6:函函数数y=cosxy=cosx,xRxR的的图图象象叫叫做做余余弦弦曲曲线线,怎怎样样画画出出余余弦弦曲曲线线,余余弦弦曲曲线线的分布有什么特点?的分布有什么特点?xyO1-12021/8/9 星期一15理论迁移理论迁移 例例1 1 用用“五五点点法法”画画出出下下列列函函数数的的简图:简图:(1)(1)y=1+sinxy=1+sinx,x0 x0,22;(2)(2)y=-cosxy=-cosx,x0 x0,2.2.2021/8/9 星期一16x xsinxsinx1+sinx1+sinx1 10 00 00 00 01 1-1-11 12 20 01 1x-1O221y y2y=1+sinxy=1+sinx2021/8/9 星期一17x xcosxcosx-cosx-cosx1 10 01 10 00 01 1-1-1-1-10 00 0-1-1x-1O221y yy=-cosxy=-cosx2021/8/9 星期一18 例例2 2 当当x0 x0,22时,求不等式时,求不等式 的解集的解集.xy yO221-1-12021/8/9 星期一19小结作业小结作业1.1.正正、余余弦弦函函数数的的图图象象每每相相隔隔22个个单单位位重重复复出出现现,因因此此,只只要要记记住住它它们们在在00,22内内的的图图象象形形态态,就就可可以以画画出出正正弦弦曲曲线和余弦曲线线和余弦曲线.2.2.作作与与正正、余余弦弦函函数数有有关关的的函函数数图图象象,是是解解题题的的基基本本要要求求,用用“五五点点法法”作作图图是常用的方法是常用的方法.2021/8/9 星期一203.3.正正、余余弦弦函函数数的的图图象象不不仅仅是是进进一一步步研研究究函函数数性性质质的的基基础础,也也是是解解决决有有关关三三角角函函数数问问题题的的工工具具,这这是是一一种种数数形形结结合合的的数学思想数学思想.作业:作业:P34P34练习:练习:2 2 P46 P46习题习题1.4 A1.4 A组组:1 12021/8/9 星期一21

    注意事项

    本文(人教版高一数学 正弦函数、余弦函数的图象1 课件.ppt)为本站会员(赵**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开