欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    微积分21数列极限.ppt

    • 资源ID:64012542       资源大小:428KB        全文页数:23页
    • 资源格式: PPT        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    微积分21数列极限.ppt

    2.1 数列极限第二章第二章 极限与连续极限与连续 本章是微积分的基础,主要讨论函数的极限本章是微积分的基础,主要讨论函数的极限与函数的连续性。与函数的连续性。称为称为数列数列,记为记为其中其中 称为数列的称为数列的通项通项或或一般项一般项;正整数正整数n称为称为 的的下标下标。例如:例如:Def:无穷多个按自然数编号无穷多个按自然数编号1,2,排列的一列数:排列的一列数:数列是自变量取正整数数列是自变量取正整数n的函数的函数(下标函下标函数数)(圆的面积)(圆的面积)正六边形的面积正六边形的面积正十二边形的面积正十二边形的面积正正 边形的面积边形的面积.当当 n 无限增大时无限增大时,无限逼近无限逼近 S.(1)(1)、割圆术:、割圆术:(刘徽割圆术)(刘徽割圆术)数列极限概念的引入数列极限概念的引入(2)(2)、截丈问题:、截丈问题:“一尺之棰,日截其半,万世不竭一尺之棰,日截其半,万世不竭”.这是极限思想在几何学中的运用。这样的极限方这是极限思想在几何学中的运用。这样的极限方法为微积分学中的一种基本方法。法为微积分学中的一种基本方法。.例例数列极限的定义:数列极限的定义:解解一个记号,不可称极限存在一个记号,不可称极限存在数列极限四则运算法则数列极限四则运算法则:(:(可推广到有限个情形可推广到有限个情形)注意极限运算的条件,若不满足则将数列变形。注意极限运算的条件,若不满足则将数列变形。例例求下列数列极限:求下列数列极限:解解(3)由于由于因为因为根式有理化根式有理化(4)由于由于因此因此(5)由于由于因此因此例例.求极限求极限(数列求和法数列求和法)分析:由于项数随分析:由于项数随n的增大而不断增加,故不是有限项,的增大而不断增加,故不是有限项,不能直接应用四则运算法则。不能直接应用四则运算法则。解解性质性质2.1举例举例定理定理2.1(夹逼定理)(夹逼定理)性质性质2.2性质性质2.3数列极限存在定理:数列极限存在定理:例例求下列数列的极限:求下列数列的极限:解解(1)由于由于因此因此注意到注意到由夹逼定理可得由夹逼定理可得(2)注意到注意到定义定义2.1定义定义2.2举例举例举例举例从数轴上直观看:从数轴上直观看:定理定理2.2单调有界数列必收敛单调有界数列必收敛.例例证明证明其次我们来证明数列其次我们来证明数列是单调递增数列,是单调递增数列,数列数列是单调递减数列是单调递减数列.事实上事实上由定理由定理2.2 知道它们都收敛,且知道它们都收敛,且

    注意事项

    本文(微积分21数列极限.ppt)为本站会员(wuy****n92)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开