人教版高中数学 1.3.1 函数的单调性与导数课件 新人教A选修22.ppt
-
资源ID:64015034
资源大小:994.50KB
全文页数:17页
- 资源格式: PPT
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
人教版高中数学 1.3.1 函数的单调性与导数课件 新人教A选修22.ppt
函数函数 y=f(x)在给定区间在给定区间 G 上,当上,当 x 1、x 2 G 且且 x 1 x 2 时时yxoabyxoab1)都有)都有 f(x 1)f(x 2),则则 f(x)在在G 上是增函数上是增函数;2)都有)都有 f(x 1)f(x 2),则则 f(x)在在G 上是减函数上是减函数;若若 f(x)在在G上是增函数或减函数,上是增函数或减函数,则则 f(x)在在G上具有严格的单调性。上具有严格的单调性。G 称为称为单调区间单调区间G=(a,b)二、复习引入二、复习引入:新课引入新课引入引例引例1.1.确定函数确定函数 在哪个在哪个区间内是增函数?区间内是增函数?在哪个区间内是减函数在哪个区间内是减函数?引例引例2.2.确定函数确定函数 在哪个在哪个区间内是增函数?区间内是增函数?在哪个区间内是减函数在哪个区间内是减函数?发现问题发现问题 函数单调性的定义是讨论函数单调性的函数单调性的定义是讨论函数单调性的基本方法,但有时十分麻烦,尤其当函数基本方法,但有时十分麻烦,尤其当函数的解析式复杂时(如的解析式复杂时(如引例引例2 2 )这里就需要寻求一种新的方法这里就需要寻求一种新的方法问题探究问题探究 函数的单调性与导数之间存在怎样的联函数的单调性与导数之间存在怎样的联系?系?观观 察察:下图下图(1)表示高台跳水运动员的高度表示高台跳水运动员的高度 h 随时间随时间 t 变化变化的函数的函数 的图象的图象,图图(2)表示高台跳水表示高台跳水运动员的速度运动员的速度 v 随时间随时间 t 变化的函数变化的函数 的图的图象象.运动员从起跳到最高点运动员从起跳到最高点,以及从最高点到入水这两段时以及从最高点到入水这两段时间的运动状态有什么区别间的运动状态有什么区别?aabbttvhOO 运动员从起跳到运动员从起跳到最高点最高点,离水面的高度离水面的高度h随时间随时间t 的增加而增加的增加而增加,即即h(t)h(t)是增函数是增函数.相应相应地地,从最高点到入水从最高点到入水,运动员运动员离水面的高度离水面的高度h随时间随时间t t的的增加而减少增加而减少,即即h(t)h(t)是减函数是减函数.相应地相应地,(1)(1)(2)(2)xyOxyOxyOxyOy=xy=x2y=x3 观察下面一些函数的图象观察下面一些函数的图象,探讨函数的单调性与其导函探讨函数的单调性与其导函数正负的关系数正负的关系.在某个区间在某个区间(a,b)内内,如果如果 ,那么函数那么函数 在这个区间内单调递增在这个区间内单调递增;如果如果 ,那么那么函数函数 在这个区间内单调递减在这个区间内单调递减.如果恒有如果恒有 ,则,则 是常数。是常数。注意:应正确理解注意:应正确理解 “某个区间某个区间”的含义的含义,它它必是定义域内的某个区间。必是定义域内的某个区间。总结提炼总结提炼例例1 1、已知导函数、已知导函数 的下列信息:的下列信息:当当1x41x0;0;当当x4,x4,或或x1x1时,时,0;0(或或f(x)0(x)0以及以及f f(x)0,(x)0f(x)0课堂小结课堂小结 本讲到此结束,请同学们课后再做好复习.谢谢!再见!作业作业 P31 A组组 1(2)()(4),),2(3)()(4)备选题备选题A 2 2、判断下列函数的单调性,并求出单调区间、判断下列函数的单调性,并求出单调区间(2)f(x)=x-lnx(1)f(x)=x3-3x 备选题备选题 3 3、求证:函数、求证:函数 f(x)=2x3+3x2-12x+1 在在区间区间(-2,1)内是减函数内是减函数备选题备选题