人教版高中数学第2章2.2.1条件概率课件新人教A选修23.ppt
-
资源ID:64015279
资源大小:216.50KB
全文页数:13页
- 资源格式: PPT
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
人教版高中数学第2章2.2.1条件概率课件新人教A选修23.ppt
2.2.1条件概率(一)条件概率(一)高二数学高二数学 选修选修2-32021/8/9 星期一1我们知道求事件的概率有加法公式:我们知道求事件的概率有加法公式:注注:1.事件事件A与与B至少有一个发生的事件叫做至少有一个发生的事件叫做A与与B的的 和事件和事件,记为记为 (或或 );3.若若 为不可能事件为不可能事件,则说则说事件事件A与与B互斥互斥.复习引入:复习引入:若事件若事件A与与B互斥,则互斥,则.那么怎么求那么怎么求A与与B的积事件的积事件AB呢呢?2.事事件件A与与B都都发发生生的的事事件件叫叫做做A与与B的的积积事事件件,记为记为 (或或 );2021/8/9 星期一2探究:探究:三张奖券中只有一张能中奖,现分别由三名同学三张奖券中只有一张能中奖,现分别由三名同学无放回的抽取,问最后一名同学抽到中奖奖券的概率无放回的抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小。是否比前两名同学小。思考思考1?如果已经知道第一名同学没有抽到中奖奖券,那如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是多少?么最后一名同学抽到中奖奖券的概率又是多少?已知第一名同学的抽奖结果为什么会影响最后已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?一名同学抽到中奖奖券的概率呢?一一般般地地,在在已已知知另另一一事事件件A A发发生生的的前前提提下下,事事件件B B发发生的可能性大小不一定再是生的可能性大小不一定再是P(B).P(B).即即 条件的附加意味着对样本空间进行压缩条件的附加意味着对样本空间进行压缩.2021/8/9 星期一3P(B|A)相当于把看作新的相当于把看作新的基本事件空间求基本事件空间求发生的发生的概率概率思考思考2?对于上面的事件对于上面的事件A和事件和事件B,P(B|A)与它们的概与它们的概率有什么关系呢?率有什么关系呢?2021/8/9 星期一41.条件概率条件概率 对任意事件对任意事件A和事件和事件B,在已知事件,在已知事件A发生的发生的条件下事件条件下事件B发生的条件概率发生的条件概率”,叫做,叫做条件概率条件概率。记作记作P(B|A).基本概念基本概念2.条件概率计算公式条件概率计算公式:2021/8/9 星期一5引例引例:掷红、蓝两颗骰子。掷红、蓝两颗骰子。设事件设事件A=“蓝色骰子的点数为蓝色骰子的点数为3或或6”事件事件B=“两颗骰子点数之和大于两颗骰子点数之和大于8”求求(1)P(A),P(B),P(AB)(2)在在“事件事件A已发生已发生”的附加条件下事件发的附加条件下事件发生生 的概率?的概率?(3)比较比较(2)中结果与中结果与P(B)的大小及三者概率之间的大小及三者概率之间关系关系2021/8/9 星期一63.概率概率 P(B|A)与与P(AB)的区别与联系的区别与联系2021/8/9 星期一7小试牛刀:小试牛刀:例例1在在6道题中有道题中有4道理科题和道理科题和2道文科题,如果不放回道文科题,如果不放回的依次抽取的依次抽取2道题道题(1)第一次抽到理科题的概率)第一次抽到理科题的概率(2)第一次与第二次都抽到理科题的概率)第一次与第二次都抽到理科题的概率(3)第一次抽到理科题的条件下,第二次抽到理科)第一次抽到理科题的条件下,第二次抽到理科题的概率题的概率.练习练习 抛掷两颗均匀的抛掷两颗均匀的骰骰子,已知第一颗子,已知第一颗骰骰子掷子掷 出出6点,问:掷出点数之和大于等于点,问:掷出点数之和大于等于10的概率。的概率。2021/8/9 星期一8例例 2 考虑恰有两个小孩的家庭考虑恰有两个小孩的家庭.(1)若已知某一家)若已知某一家有一个女孩,求这家另一个是男孩的概率;(有一个女孩,求这家另一个是男孩的概率;(2)若)若已知某家第一个是男孩,求这家有两个男孩(相当于已知某家第一个是男孩,求这家有两个男孩(相当于第二个也是男孩)的概率第二个也是男孩)的概率.(3)某一家打算生两个,求某一家打算生两个,求两个都是男孩的概率。两个都是男孩的概率。例例 3 设设P(A|B)=P(B|A)=,P(A)=,求求P(B).2021/8/9 星期一9例例4 盒中有球如表盒中有球如表.任取一球任取一球 玻璃玻璃 木木质质总计总计红红 蓝蓝2347511总计总计61016若已知取得是蓝球若已知取得是蓝球,问该球是玻璃球的概率问该球是玻璃球的概率.变式变式:若已知取得是玻璃球若已知取得是玻璃球,求取得是篮球的概率求取得是篮球的概率.2021/8/9 星期一10练一一练1.某种动物出生之后活到某种动物出生之后活到20岁的概率为岁的概率为0.7,活到活到25岁的概率为岁的概率为0.56,求现年为,求现年为20岁的这种岁的这种动物活到动物活到25岁的概率。岁的概率。解解 设设A表示表示“活到活到20岁岁”(即即20),B表示表示“活到活到25岁岁”(即即25)则则 所求概率为所求概率为 0.560.560.70.75 52021/8/9 星期一11n2.2.抛掷一颗骰子抛掷一颗骰子,观察出现的点数观察出现的点数B=B=出现的点数是奇数出现的点数是奇数,A=A=出现的点数不超过出现的点数不超过33,若已知出现的点数不超过若已知出现的点数不超过3 3,求出现的点数是奇数,求出现的点数是奇数的概率的概率 解:即事件解:即事件 A A 已发生,求事件已发生,求事件 B B 的概率的概率也就是求:(也就是求:(B BA A)A A B B 都发生,但样本空都发生,但样本空间缩小到只包含间缩小到只包含A A的样本点的样本点5 52 21 13 34,64,62021/8/9 星期一123.设设 100件产品中有件产品中有 70件一等品,件一等品,25件二等品,规件二等品,规定一、二等品为合格品从中任取定一、二等品为合格品从中任取1件,求件,求(1)取得一取得一等品的概率;等品的概率;(2)已知取得的是合格品,求它是一等品已知取得的是合格品,求它是一等品的概率的概率 解解设设B表示取得一等品,表示取得一等品,A表示取得合格品,则表示取得合格品,则(1)因为因为100件产品中有件产品中有 70件一等品,件一等品,(2)方法方法1:方法方法2:因为因为95件合格品中有件合格品中有 70件一等品,所以件一等品,所以707095955 52021/8/9 星期一13