高中数学知识总结.docx
高中数学知识总结集合语言是现代数学的基本语言,运用集合语言可以简洁、精确地表达数学的一些相关内容.以下是我搜集整合了中学数学集合学问,希望可以帮助大家更好的学习这些学问。中学数学集合学问总结如下:一、集合间的关系1.子集:假如集合A中全部元素都是集合B中的元素,则称集合A为集合B的子集。2.真子集:假如集合AB,但存在元素aB,且a不属于A,则称集合A是集合B的真子集。3.集合相等:集合A与集合B中元素相同那么就说集合A与集合B相等。子集:一般地,对于两个集合A与B,假如集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作:AB(或BA),读作“A包含于B”(或“B包含A”),这时我们说集合是集合的子集,更多集合关系的学问点见集合间的基本关系二、集合的运算1.并集并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作AB(或BA),读作“A并B”(或“B并A”),即AB=x|xA,或xB2.交集交集: 以属于A且属于B的元素为元素的集合称为A与B的交(集),记作AB(或BA),读作“A交B”(或“B交A”),即AB=x|xA,且xB3.补集三、中学数学集合学问归纳:1.集合的有关概念。1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素留意:集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则ab)和无序性(a,b与b,a表示同一个集合)。集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必需符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。4)常用数集:N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。1)子集:若对xA都有xB,则A B(或A B);2)真子集:A B且存在x0B但x0 A;记为A B(或 ,且 )3)交集:AB=x| xA且xB4)并集:AB=x| xA或xB5)补集:CUA=x| x A但xU留意:? A,若A?,则? A ;若 , ,则 ;若 且 ,则A=B(等集)3.弄清集合与元素、集合与集合的关系,驾驭有关的术语和符号,特殊要留意以下的符号:(1) 与 、?的区分;(2) 与 的区分;(3) 与 的区分。4.有关子集的几个等价关系AB=A A B;AB=B A B;A B C uA C uB;ACuB = 空集 CuA B;CuAB=I A B。5.交、并集运算的性质AA=A,A? = ?,AB=BA;AA=A,A? =A,AB=BA;Cu (AB)= CuACuB,Cu (AB)= CuACuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。四、数学集合例题讲解:已知集合M=x|x=m+ ,mZ,N=x|x= ,nZ,P=x|x= ,pZ,则M,N,P满意关系A) M=N P B) M N=P C) M N P D) N P M分析一:从推断元素的共性与区分入手。解答一:对于集合M:x|x= ,mZ;对于集合N:x|x= ,nZ对于集合P:x|x= ,pZ,由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以M N=P,故选B。分析二:简洁列举集合中的元素。解答二:M=, ,N=, , , ,P=, , ,这时不要急于推断三个集合间的关系,应分析各集合中不同的元素。= N, N,M N,又 = M,M N,= P,N P 又 N,P N,故P=N,所以选B。点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。变式:设集合 , ,则( B )A.M=N B.M N C.N M D.解:当 时,2k+1是奇数,k+2是整数,选B定义集合A*B=x|xA且x B,若A=1,3,5,7,B=2,3,5,则A*B的子集个数为A)1 B)2 C)3 D)4分析:确定集合A*B子集的个数,首先要确定元素的个数,然后再利用公式:集合A=a1,a2,an有子集2n个来求解。解答:A*B=x|xA且x B, A*B=1,7,有两个元素,故A*B的子集共有22个。选D。变式1:已知非空集合M 1,2,3,4,5,且若aM,则6?aM,那么集合M的个数为A)5个 B)6个 C)7个 D)8个变式2:已知a,b A a,b,c,d,e,求集合A.解:由已知,集合中必需含有元素a,b.集合A可能是a,b,a,b,c,a,b,d,a,b,e,a,b,c,d,a,b,c,e,a,b,d,e.评析 本题集合A的个数实为集合c,d,e的真子集的个数,所以共有 个 .已知集合A=x|x2+px+q=0,B=x|x2?4x+r=0,且AB=1,AB=?2,1,3,求实数p,q,r的值。解答:AB=1 1B 12?4×1+r=0,r=3.B=x|x2?4x+r=0=1,3, AB=?2,1,3,?2 B, ?2AAB=1 1A 方程x2+px+q=0的两根为-2和1, 变式:已知集合A=x|x2+bx+c=0,B=x|x2+mx+6=0,且AB=2,AB=B,求实数b,c,m的值.解:AB=2 1B 22+m?2+6=0,m=-5B=x|x2-5x+6=0=2,3 AB=B 又 AB=2 A=2 b=-(2+2)=4,c=2×2=4b=-4,c=4,m=-5已知集合A=x|(x-1)(x+1)(x+2)>0,集合B满意:AB=x|x>-2,且AB=x|1分析:先化简集合A,然后由AB和AB分别确定数轴上哪些元素属于B,哪些元素不属于B。解答:A=x|-21。由AB=x|1-2可知-1,1 B,而(-,-2)B=。综合以上各式有B=x|-1x5变式1:若A=x|x3+2x2-8x>0,B=x|x2+ax+b0,已知AB=x|x>-4,AB=,求a,b。(答案:a=-2,b=0)点评:在解有关不等式解集一类集合问题,应留意用数形结合的方法,作出数轴来解之。变式2:设M=x|x2-2x-3=0,N=x|ax-1=0,若MN=N,求全部满意条件的a的集合。解答:M=-1,3 , MN=N, N M当 时,ax-1=0无解,a=0 综得:所求集合为-1,0, 已知集合 ,函数y=log2(ax2-2x+2)的定义域为Q,若PQ,求实数a的取值范围。分析:先将原问题转化为不等式ax2-2x+2>0在 有解,再利用参数分别求解。解答:(1)若 , 在 内有有解令 当 时,所以a>-4,所以a的取值范围是变式:若关于x的方程 有实根,求实数a的取值范围。解答:点评:解决含参数问题的题目,一般要进行分类探讨,但并不是全部的问题都要探讨,怎样可以避开探讨是我们思索此类问题的关键。