欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数系的扩充历史和复数的概念.ppt

    • 资源ID:64358983       资源大小:2.88MB        全文页数:29页
    • 资源格式: PPT        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数系的扩充历史和复数的概念.ppt

    数系的扩充和 复数的概念学习目标学习目标1 1通过数系的扩充过程,知道实际需求通过数系的扩充过程,知道实际需求在数系扩充过程中的作用在数系扩充过程中的作用。2 2知道复数的基本概念,能根据定义判知道复数的基本概念,能根据定义判断实数、虚数、纯虚数。断实数、虚数、纯虚数。3 3知道复数相等的充要条件,学会解决知道复数相等的充要条件,学会解决复数相等问题。复数相等问题。正整数在古代,首先有的在古代,首先有的是正整数,古代的是正整数,古代的人为记录一天的劳人为记录一天的劳作结果,常常以结作结果,常常以结绳来计数。我国古绳来计数。我国古书易经中就有书易经中就有“结绳而治结绳而治”的记的记载。载。结绳记事正整数正整数随着生产生活的需要,人们随着生产生活的需要,人们慢慢发现,仅仅表示出正整慢慢发现,仅仅表示出正整数是不够的。如果分配食物数是不够的。如果分配食物时,时,2 2个人分三只苹果,每个人分三只苹果,每个人应该得到多少呢?自然个人应该得到多少呢?自然地,分数就出现了。地,分数就出现了。等额分配问题等额分配问题正整数正整数正整数正整数分数分数班级信息栏负数的引入 重大进步在生产实践中,人们往往需要测量相反意义的量,例在生产实践中,人们往往需要测量相反意义的量,例如海拔,高度等等,因此负数也就应运而生了如海拔,高度等等,因此负数也就应运而生了。海平面珠穆朗玛峰吐鲁番盆地比海平面低155米记作-155米高度看作0.正整数正整数正整数正整数分数分数分数分数无理数无理数无理数无理数正整数正整数正整数正整数分数分数分数分数负数负数负数负数 在“数”的发展史上,希腊的毕达哥拉斯学派发现了“无理数”。无理数的发现 重大突破毕达哥拉斯毕达哥拉斯设斜边长是设斜边长是x,根据根据勾股定理可得,勾股定理可得,11x2=12+12=2正整数正整数正整数正整数分数分数分数分数无理数无理数无理数无理数正整数正整数正整数正整数分数分数分数分数无理数无理数无理数无理数负数负数数够用了吗?数够用了吗?数集扩充到实数集数集扩充到实数集R R以后,我们可以解以后,我们可以解 -2-2=0=0这样的方程这样的方程但是方程但是方程 +1=0+1=0还是无解的,因为没有一个实数的平方还是无解的,因为没有一个实数的平方等于等于-1.-1.如何解决这个问题?如何解决这个问题?17771777年年 欧拉首次提出用欧拉首次提出用i i表示表示平方平方等于等于-1-1的新数的新数Leonhard Euler(1707-1783)欧欧 拉拉18011801年年 高斯系高斯系统使用了使用了i i这个符号个符号 使之通行于世使之通行于世 (17771855)高高 斯斯Johann Carl Friedrich Gauss1 1 1 1引入新数引入新数引入新数引入新数 i i,并规定:并规定:并规定:并规定:(1 1)i i 2 2 2 2 1 1 1 1;(2 2)实数可以与实数可以与实数可以与实数可以与 i i 进行四则运算进行四则运算进行四则运算进行四则运算,在进在进在进在进 行四则运算时行四则运算时行四则运算时行四则运算时,原有的加法与乘法原有的加法与乘法原有的加法与乘法原有的加法与乘法 的运算律仍然成立的运算律仍然成立的运算律仍然成立的运算律仍然成立.(1)(1)形如形如a+bi(a,bR)R)的数叫做复数的数叫做复数,通常用字母通常用字母 Z Z表示表示.(3)(3)全体复数所形成的集合叫做全体复数所形成的集合叫做复数复数复数复数 集集集集,一般用字母,一般用字母 C C 表示表示.复数的概念复数的概念实部实部虚部虚部(2)(2)数系的扩充数系的扩充其中其中 称为称为虚数单位虚数单位.写出下列复数的实部与虚部写出下列复数的实部与虚部.解解:4的实部为的实部为 4 ,虚部为虚部为 0 ;2-3i的实部为的实部为 2 ,虚部为虚部为 -3 ;0的实部为的实部为 0 ,虚部为虚部为 0 ;的实部为的实部为 ,虚部为虚部为 ;的实部为的实部为 5 ,虚部为虚部为 ;6i的实部为的实部为 0 ,虚部为虚部为 6 。复复数数的的分分类类请指出哪些是实数,哪些是虚数,哪些是请指出哪些是实数,哪些是虚数,哪些是纯虚数纯虚数.解解:实数有实数有 ;虚数有虚数有 ;纯虚数有纯虚数有 .4 ,0 例例例例1 1 实数实数实数实数mm取什么值时,复数取什么值时,复数取什么值时,复数取什么值时,复数 是(是(是(是(1 1)实数?)实数?)实数?)实数?(2 2)虚数?)虚数?)虚数?)虚数?(3 3)纯虚数?)纯虚数?)纯虚数?)纯虚数?解解:(1)当当 ,即,即 时,复数时,复数z 是实数是实数(2)当当 ,即,即 时,复数时,复数z 是虚数是虚数(3)当当即即 时,复数时,复数z 是是纯虚数纯虚数跟踪练习跟踪练习1:1:当当m m为何实数时,复数为何实数时,复数 是是 (1 1)实数)实数 (2 2)虚数)虚数 (3 3)纯虚数)纯虚数(1)(2)(3)如何定义两个复数相等?反之,也成立.如果两个复数的实部和虚部分别相等,如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等那么我们就说这两个复数相等,则则想一想想一想复数相等的问题复数相等的问题转化转化求方程组的解的问题求方程组的解的问题转化(复数问题实数化)转化(复数问题实数化)解解:根据两个复数相等的充要条件,根据两个复数相等的充要条件,可得方程组可得方程组解得解得:例例2:2:已知已知与与求实数求实数(1)若(2x2-3x-2)+(x2-5x+6)=0,求x的值.x=2x=2(2)若x,y为实数,且 求x,y.跟踪练习2x=-3,y=4x=-3,y=4探究:探究:任意两个复数可以比较大小吗?任意两个复数可以比较大小吗?认为可以者,请拿出进行比较的方法;认认为可以者,请拿出进行比较的方法;认为不可以者,请说明理由为不可以者,请说明理由。两个实数可以比较大小两个实数可以比较大小实数与虚数实数与虚数不不可以比较大小可以比较大小虚数与虚数虚数与虚数不不可以比较大小可以比较大小 若 为实数,那么使 的 的值的是多少?拓展提升拓展提升1.1.虚数单位虚数单位i的引入;的引入;3.3.复数的分类复数的分类2.2.复数有关概念:复数有关概念:学习小结复数相等复数相等复数的代数形式复数的代数形式:复数的实部复数的实部、虚部、虚部虚数、纯虚数虚数、纯虚数我会做!我会做!SHUXI DI KUOCHONG数系的扩充数系的扩充课后作业:课本P55/习题3.1A组/第1,2,题拓展延伸:1数系还能再扩充吗?2作为一个新数集,如何定义复数的四则运算呢?与君共勉与君共勉数学是无数学是无穷的科学。的科学。问题是数学的心是数学的心脏。路漫漫其修路漫漫其修远兮,吾将上下而求索。兮,吾将上下而求索。

    注意事项

    本文(数系的扩充历史和复数的概念.ppt)为本站会员(wuy****n92)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开