欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    医用高等数学精.ppt

    • 资源ID:64366433       资源大小:1.40MB        全文页数:18页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    医用高等数学精.ppt

    医用高等数学课件第1页,本讲稿共18页三、复合函数求导法则三、复合函数求导法则定理定理2-2 即即 因变量对自变量求导,等于因变量对中间变量求导,因变量对自变量求导,等于因变量对中间变量求导,乘以中间变量对自变量求导乘以中间变量对自变量求导.(链式法则链式法则)或或推广推广则复合函数则复合函数 的导数为的导数为或或第2页,本讲稿共18页解解解解例例2-12 已知函数已知函数 ,求求例例2-13 已知函数已知函数 ,求求第3页,本讲稿共18页例例2-14 已知函数已知函数 ,求求 比较熟练后比较熟练后,中间变量不必写出来中间变量不必写出来,直接按锁链法则对复合函数直接按锁链法则对复合函数求导求导.解解第4页,本讲稿共18页 例例2-15 证明幂函数的求导公式证明幂函数的求导公式 对任意实对任意实数指数数指数 成立成立.证明证明 将将 化为化为 ,则则例如例如,第5页,本讲稿共18页例例2-16 已知函数已知函数 ,求求解解 为幂指函数为幂指函数,将其化为将其化为 ,则则例例2-17 已知函数已知函数 ,求求解解第6页,本讲稿共18页第7页,本讲稿共18页四、隐函数的导数四、隐函数的导数 如果联系两个变量如果联系两个变量 和和 的函数式是由方程的函数式是由方程 来确定的,这样的函数称为来确定的,这样的函数称为隐函数隐函数.隐函数的显化隐函数的显化例如例如(显化)(显化)(不能显化)(不能显化)问题问题:隐函数不易显化或不能显化如何求导隐函数不易显化或不能显化如何求导?直接从方程直接从方程 两边来求导两边来求导,称为隐函数的称为隐函数的求导法则求导法则.第8页,本讲稿共18页 例例2-20 已知函数已知函数 是由椭圆方程是由椭圆方程 所确定所确定的的,求求 解解 方程两边分别关于方程两边分别关于 求导求导,由复合函数求导法则由复合函数求导法则和四则运算法则有和四则运算法则有解得解得第9页,本讲稿共18页 例例2-21 已知函数已知函数 是由方程是由方程 确定的确定的.求求 和和 解解 方程两边分别关于方程两边分别关于 求导求导,由复合函数求导法则由复合函数求导法则和四则运算法则有和四则运算法则有解得解得所以所以第10页,本讲稿共18页对数求导法对数求导法 方法方法:先在方程两边取对数先在方程两边取对数,然后利用隐函数的求导方然后利用隐函数的求导方法求出导数法求出导数.适用范围适用范围:解解 两边取对数,得两边取对数,得两边对两边对 求导,得求导,得例例2-23 已知函数已知函数 ,求求第11页,本讲稿共18页所以所以解解 两边取对数,得两边取对数,得例例2-24 已知函数已知函数 ,求求第12页,本讲稿共18页五、参数方程确定函数的导数五、参数方程确定函数的导数若参数方程若参数方程可确定一个可确定一个 y 与与 x 之间的函数之间的函数可导可导,且且则则时时,有有关系关系,第13页,本讲稿共18页 第14页,本讲稿共18页六、高阶导数六、高阶导数记作记作三阶导数的导数称为四阶导数三阶导数的导数称为四阶导数,二阶导数的导数称为三阶导数二阶导数的导数称为三阶导数,第15页,本讲稿共18页二阶和二阶以上的导数统称为二阶和二阶以上的导数统称为高阶导数高阶导数.例例1 已知指数函数已知指数函数 (为常数为常数),求求解解例例2 已知已知 次多项式次多项式 求求 的各阶导数的各阶导数.解解第16页,本讲稿共18页例例3 解解:第17页,本讲稿共18页解解:同理可得同理可得例例4第18页,本讲稿共18页

    注意事项

    本文(医用高等数学精.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开