欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高数同济六版bai-D3_1微分中值定理.ppt

    • 资源ID:64392772       资源大小:1.36MB        全文页数:28页
    • 资源格式: PPT        下载积分:10.8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10.8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高数同济六版bai-D3_1微分中值定理.ppt

    第三章中值定理中值定理应用应用研究函数性质及曲线性态利用导数解决实际问题罗尔中值定理拉格朗日中值定理柯西中值定理泰勒公式(第三节)推广推广微分中值定理 与导数的应用 目录 上页 下页 返回 结束 一、罗尔一、罗尔(Rolle)定理定理第一节二、拉格朗日中值定理二、拉格朗日中值定理 三、柯西三、柯西(Cauchy)中值定理中值定理 中值定理 第三三章 目录 上页 下页 返回 结束 费马费马(fermat)引引理理一、罗尔一、罗尔(Rolle)定理定理且 存在证证:设则费马 证毕目录 上页 下页 返回 结束 罗尔(罗尔(Rolle)定理定理满足:(1)在区间 a,b 上连续(2)在区间(a,b)内可导(3)f(a)=f(b)使证证:故在 a,b 上取得最大值 M 和最小值 m.若 M=m,则因此在(a,b)内至少存在一点目录 上页 下页 返回 结束 若 M m,则 M 和 m 中至少有一个与端点值不等,不妨设 则至少存在一点使注意注意:1)定理条件条件不全具备,结论不一定成立.则由费马引理得 例如,目录 上页 下页 返回 结束 使2)定理条件只是充分的.本定理可推广为在(a,b)内可导,且在(a,b)内至少存在一点证明提示证明提示:设证 F(x)在 a,b 上满足罗尔定理.目录 上页 下页 返回 结束 例例1.证明方程有且仅有一个小于1 的正实根.证证:1)存在性.则在 0,1 连续,且由介值定理知存在使即方程有小于 1 的正根2)唯一性.假设另有为端点的区间满足罗尔定理条件,至少存在一点但矛盾,故假设不真!设目录 上页 下页 返回 结束 二、拉格朗日中值定理二、拉格朗日中值定理(1)在区间 a,b 上连续满足:(2)在区间(a,b)内可导至少存在一点使思路思路:利用逆向思维逆向思维找出一个满足罗尔定理条件的函数作辅助函数显然,在a,b 上连续,在(a,b)内可导,且证证:问题转化为证由罗尔定理知至少存在一点即定理结论成立.拉氏 证毕目录 上页 下页 返回 结束 拉格朗日中值定理的有限增量形式:推论推论:若函数在区间 I 上满足则在 I 上必为常数.证证:在 I 上任取两点日中值公式,得由 的任意性知,在 I 上为常数.令则目录 上页 下页 返回 结束 例例2.证明等式证证:设由推论可知 (常数)令 x=0,得又故所证等式在定义域 上成立.自证自证:经验经验:欲证时只需证在 I 上目录 上页 下页 返回 结束 例例3.证明不等式证证:设中值定理条件,即因为故因此应有目录 上页 下页 返回 结束 三、柯西三、柯西(Cauchy)中值定理中值定理分析分析:及(1)在闭区间 a,b 上连续(2)在开区间(a,b)内可导(3)在开区间(a,b)内至少存在一点使满足:问题转化为证柯西 构造辅助函数构造辅助函数目录 上页 下页 返回 结束 证证:作辅助函数且使即由罗尔定理知,至少存在一点思考思考:柯西定理的下述证法对吗?两个 不一定相同错错!上面两式相比即得结论.目录 上页 下页 返回 结束 柯西定理的几何意义柯西定理的几何意义:注意:弦的斜率切线斜率目录 上页 下页 返回 结束 例例4.设至少存在一点使证证:问题转化为证设则在 0,1 上满足柯西中值定理条件,因此在(0,1)内至少存在一点 ,使即证明目录 上页 下页 返回 结束 例例5.试证至少存在一点使证证:法法1 用柯西中值定理.则 f(x),F(x)在 1,e 上满足柯西中值定理条件,令因此 即分析分析:目录 上页 下页 返回 结束 例例5.试证至少存在一点使法法2 令则 f(x)在 1,e 上满足罗尔中值定理条件,使因此存在目录 上页 下页 返回 结束 内容小结内容小结1.微分中值定理的条件、结论及关系罗尔定理拉格朗日中值定理柯西中值定理2.微分中值定理的应用(1)证明恒等式(2)证明不等式(3)证明有关中值问题的结论关键关键:利用逆向思维设辅助函数费马引理目录 上页 下页 返回 结束 思考与练习思考与练习1.填空题填空题1)函数在区间 1,2 上满足拉格朗日定理条件,则中值2)设有个根,它们分别在区间上.方程目录 上页 下页 返回 结束 2.设且在内可导,证明至少存在一点使提示提示:由结论可知,只需证即验证在上满足罗尔定理条件.设目录 上页 下页 返回 结束 3.若可导,试证在其两个零点间一定有的零点.提示提示:设欲证:使只要证亦即作辅助函数验证在上满足罗尔定理条件.目录 上页 下页 返回 结束 4.思考:在即当时问问是否可由此得出 不能不能!因为是依赖于 x 的一个特殊的函数.因此由上式得表示 x 从右侧以任意方式趋于 0.应用拉格朗日中值定理得上对函数目录 上页 下页 返回 结束 作业作业P134 2,5,6,9提示提示:题*15.题14.考虑第二节 目录 上页 下页 返回 结束 备用题备用题求证存在使1.设 可导,且在连续,证证:设辅助函数因此至少存在显然在 上满足罗尔定理条件,即使得目录 上页 下页 返回 结束 设 证明对任意有证:证:2.不妨设

    注意事项

    本文(高数同济六版bai-D3_1微分中值定理.ppt)为本站会员(安***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开