欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    结构的动力学计算优秀课件.ppt

    • 资源ID:64399577       资源大小:2.55MB        全文页数:21页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    结构的动力学计算优秀课件.ppt

    结构的动力学计算1第1页,本讲稿共21页8-1 8-1 动力计算概述动力计算概述一、动力计算的特点、目的和内容一、动力计算的特点、目的和内容1 1、特点:、特点:静力荷载与动力荷载的特点及其效应。静力荷载与动力荷载的特点及其效应。“静力荷载静力荷载”是指其大小、方向和作用位置不随时间而变化的荷载。这是指其大小、方向和作用位置不随时间而变化的荷载。这类荷载类荷载对结构产生的惯性力可以忽略不计对结构产生的惯性力可以忽略不计,由它所引起的内力和变形都是确定,由它所引起的内力和变形都是确定的。的。“动力荷载动力荷载”是指其大小、方向和作用位置随时间而变化的荷载。这类是指其大小、方向和作用位置随时间而变化的荷载。这类荷载荷载对结构产生的惯性力不能忽略对结构产生的惯性力不能忽略,因动力荷载将使结构产生相当大的加速度,因动力荷载将使结构产生相当大的加速度,由它所引起的内力和变形都是时间的函数。由它所引起的内力和变形都是时间的函数。2 2、目的和内容、目的和内容 计算结构的动力反应计算结构的动力反应:内力、位移、速度与加速度,使结构在动内力与静:内力、位移、速度与加速度,使结构在动内力与静内力共同作用下满足强度和变形的要求。内力共同作用下满足强度和变形的要求。与静力计算的对比:与静力计算的对比:两者都是建立平衡方程,但动力计算,利用动静法,两者都是建立平衡方程,但动力计算,利用动静法,建立的是形式上的平衡方程。力系中包含了惯性力,考虑的是瞬间平衡,荷建立的是形式上的平衡方程。力系中包含了惯性力,考虑的是瞬间平衡,荷载、内力都是时间的函数。建立的载、内力都是时间的函数。建立的平衡方程是微分方程平衡方程是微分方程。2第2页,本讲稿共21页P(t)tPt简谐荷载(按正余弦规律变化)简谐荷载(按正余弦规律变化)一般周期荷载一般周期荷载 动力计算的内容动力计算的内容:研究结构在动荷载作用下的动力反应的计算原理和方法。:研究结构在动荷载作用下的动力反应的计算原理和方法。二、动力荷载分类二、动力荷载分类 按起变化规律及其作用特点可分为:按起变化规律及其作用特点可分为:1 1)周期荷载:随时间作周期性变化)周期荷载:随时间作周期性变化。(转动电机的偏心力)。(转动电机的偏心力)涉及到内外两方面的因素:涉及到内外两方面的因素:1 1)确定动力荷载(外部因素,即干扰力);)确定动力荷载(外部因素,即干扰力);2 2)确定结构的动力特性(内部因素,如结构的自振频率、周期、振型和)确定结构的动力特性(内部因素,如结构的自振频率、周期、振型和阻尼等等),类似静力学中的阻尼等等),类似静力学中的I、S等;等;计算动位移及其幅值;计算动内力及其幅值。计算动位移及其幅值;计算动内力及其幅值。3第3页,本讲稿共21页三、动力计算中体系的自由度三、动力计算中体系的自由度 确定体系上全部质量位置所需独立参数的个数称为确定体系上全部质量位置所需独立参数的个数称为体系的振动自由度体系的振动自由度。实际结构的质量都是连续分布的,严格地说来都是无限自由度体系。计算实际结构的质量都是连续分布的,严格地说来都是无限自由度体系。计算困难,常作简化如下:困难,常作简化如下:1 1、集中质量法、集中质量法 把连续分布的质量集中为几个质点,将一个无限自由度的问题简化成有限把连续分布的质量集中为几个质点,将一个无限自由度的问题简化成有限自由度问题。自由度问题。3 3)随机荷载:)随机荷载:(非确定性荷载非确定性荷载)荷载在将来任一时刻的数值无法事先确定。荷载在将来任一时刻的数值无法事先确定。(如地震荷载、风荷载)(如地震荷载、风荷载)2 2)冲击荷载:)冲击荷载:短时内剧增或剧减。(如爆炸荷载)短时内剧增或剧减。(如爆炸荷载)PtP(t)ttrPtrP4第4页,本讲稿共21页2个自由度个自由度y2y12个自由度个自由度自由度与质量数不一定相等自由度与质量数不一定相等mmm梁m+m梁II2Im+m柱厂房排架水平振厂房排架水平振时的计算简图时的计算简图单自由度体系单自由度体系5第5页,本讲稿共21页水平振动时的计算体系水平振动时的计算体系多自由度体系多自由度体系构架式基础顶板简化成刚性块构架式基础顶板简化成刚性块(t)v(t)u(t)4个自由度个自由度m1m2m32个自由度个自由度6第6页,本讲稿共21页y(x,t)x无限自由度体系无限自由度体系2 2、广义座标法:、广义座标法:如简支梁的变形曲线可用三角级数来表示如简支梁的变形曲线可用三角级数来表示 用几条函数曲线来描述体系的振动曲用几条函数曲线来描述体系的振动曲线就称它是几个自由度体系,其中线就称它是几个自由度体系,其中 是根据边界约束条件选取是根据边界约束条件选取的函数,称为形状函数。的函数,称为形状函数。ak(t)称广义座标,为一组待定称广义座标,为一组待定参数,其个数即为自由度数,用此法可将参数,其个数即为自由度数,用此法可将无限自由度体系简化为有限自由度体系。无限自由度体系简化为有限自由度体系。x yxa1,a2,.any(x,t)7第7页,本讲稿共21页四、动力计算的方法四、动力计算的方法动力平衡法(达朗伯尔原理)动力平衡法(达朗伯尔原理)m.运动方程运动方程m设其中设其中P(t)I(t).平衡方程平衡方程I(t)惯性力,与加速度成正比,方向相反惯性力,与加速度成正比,方向相反改写成改写成虚功原理(拉格朗日方程)虚功原理(拉格朗日方程)哈米顿原理(变分方程)哈米顿原理(变分方程)都要用到抽象的虚位移概念都要用到抽象的虚位移概念8第8页,本讲稿共21页8-2 8-2 单自由度体系的自由振动单自由度体系的自由振动 自由振动自由振动:体系在振动过程中没有动荷载的作用。:体系在振动过程中没有动荷载的作用。静平衡位置静平衡位置m获得初位移获得初位移ym获得初速度获得初速度自由振动产生原因自由振动产生原因:体系在初始时刻(:体系在初始时刻(t=t=0 0)受到外界的干扰。)受到外界的干扰。研究单自由度体系的自由振动重要性在于:研究单自由度体系的自由振动重要性在于:1 1、它代表了许多实际工程问题,如水塔、单层厂房等。、它代表了许多实际工程问题,如水塔、单层厂房等。2 2、它是分析多自由度体系的基础,包含了许多基本概念。、它是分析多自由度体系的基础,包含了许多基本概念。自由振动反映了体系的固有动力特性。自由振动反映了体系的固有动力特性。要解决的问题包括:要解决的问题包括:建立运动方程、计算自振频率、周期和阻尼建立运动方程、计算自振频率、周期和阻尼.9第9页,本讲稿共21页 一、运动微分方程的建立一、运动微分方程的建立方法:达朗伯尔原理方法:达朗伯尔原理应用条件:微幅振动(线性微分方程)应用条件:微幅振动(线性微分方程)1 1、刚度法刚度法:研究作用于被隔离的质量上的:研究作用于被隔离的质量上的力,建立平衡方程。力,建立平衡方程。m.yj.yd静平衡位置质量m在任一时刻的位移 y(t)=yj+ydk力学模型力学模型.ydmmWS(t)I(t)+重力重力 W弹性力弹性力 恒与位移反向恒与位移反向惯性力惯性力(a)其中 kyj=W 及上式可以简化为或或由平衡位置计量。以位移为未知量的平衡方程式,引用了刚度系数,称刚度法。由平衡位置计量。以位移为未知量的平衡方程式,引用了刚度系数,称刚度法。10第10页,本讲稿共21页2 2、柔度法柔度法:研究结构上质点的位移,建立位移协调方程。:研究结构上质点的位移,建立位移协调方程。.m静平衡位置I(t)可得与可得与 (b b)相同的方程相同的方程刚度法常用于刚架类结构,柔度法常用于梁式结构。刚度法常用于刚架类结构,柔度法常用于梁式结构。二、自由振动微分方程的解二、自由振动微分方程的解改写为其中它是二阶线性齐次微分方程,其一般解为:它是二阶线性齐次微分方程,其一般解为:积分常数积分常数C1,C2由初始条件确定由初始条件确定11第11页,本讲稿共21页m静平衡位置静平衡位置I(t)设设 t=0 时时.(d)式可以写成式可以写成 由式可知,位移是由初位移由式可知,位移是由初位移y 引起的余弦运动和由初速度引起的余弦运动和由初速度v 引起的正弦运引起的正弦运动的合成,为了便于研究合成运动动的合成,为了便于研究合成运动,令令(e)式改写成式改写成它表示合成运动仍是一个简谐运动。其中它表示合成运动仍是一个简谐运动。其中A和和 可由下式确定可由下式确定振幅振幅相位角相位角12第12页,本讲稿共21页y0ty-yTTTyt0yt0 A-A13第13页,本讲稿共21页三、结构的自振周期和频率三、结构的自振周期和频率由式由式及图可见位移方程是一个周期函数。及图可见位移方程是一个周期函数。Tyt0 A-A周期周期工程频率工程频率园频率园频率计算频率和周期的几种形式计算频率和周期的几种形式频率频率和周和周期的期的讨论讨论1.1.只与结构的质量与刚度有关,与外界干扰无关;只与结构的质量与刚度有关,与外界干扰无关;2.2.与与m的平方根成正比,与的平方根成正比,与k成反比,据此可改变周期;成反比,据此可改变周期;3.3.是结构动力特性的重要数量标志。是结构动力特性的重要数量标志。14第14页,本讲稿共21页三三.自振频率和周期的计算自振频率和周期的计算2.2.算例算例例一例一.求图示体系的自振频率和周期求图示体系的自振频率和周期.m mEIlEIl=1=1ll/2l解解:15第15页,本讲稿共21页例二例二.求图示体系的自振频率和周期求图示体系的自振频率和周期.=1解解:m mEIllm/2EIEIll例三例三.质点重质点重W,求体系的频率和周期求体系的频率和周期.解解:EIkl1k16第16页,本讲稿共21页例例1.1.计算图示结构的频率和周期。计算图示结构的频率和周期。mEI l/2 l/21例例2.2.计算图示结构的水平和竖向振动频率。计算图示结构的水平和竖向振动频率。mlA,E,IE,I1E,A1IIEI1=mhk例例3.3.计算图示刚架的频率和周期。计算图示刚架的频率和周期。由截面平衡由截面平衡17第17页,本讲稿共21页四、简谐自由振动的特性四、简谐自由振动的特性由式由式可得,可得,加速度为:加速度为:在无阻尼自由振动中,在无阻尼自由振动中,位移、加速度和惯性力位移、加速度和惯性力都按正弦规律变化,都按正弦规律变化,且且作相位相同的同步运动作相位相同的同步运动,即它们在同一时刻均达极值,而且惯性力,即它们在同一时刻均达极值,而且惯性力的方向与位移的方向一致。的方向与位移的方向一致。它们的幅值产生于它们的幅值产生于时,其值分别为:时,其值分别为:既然在运动的任一瞬时质体都处于平衡状态,在幅值出现时间也一样,既然在运动的任一瞬时质体都处于平衡状态,在幅值出现时间也一样,于是可于是可在幅值处建立运动方程在幅值处建立运动方程,此时方程中将不含时间,此时方程中将不含时间t,结果把,结果把微分方微分方程转化为代数方程程转化为代数方程了,使计算得以简化。了,使计算得以简化。惯性力为:惯性力为:18第18页,本讲稿共21页例例4.4.计算图示体系的自振频率。计算图示体系的自振频率。ABCDEI=l/2 l/2lkBCk.A1.A2 解:单自由度体系,解:单自由度体系,以以 表示位移参数的幅值表示位移参数的幅值,各质点上所受的力为:各质点上所受的力为:建立力矩平衡方程建立力矩平衡方程化简后得化简后得19第19页,本讲稿共21页五、阻尼对振动的影响五、阻尼对振动的影响 实验证明,振动中的结构,不仅产生与变形成比例的弹性内力,还产生实验证明,振动中的结构,不仅产生与变形成比例的弹性内力,还产生非弹性的内力,非弹性的内力,非弹性力起阻尼作用非弹性力起阻尼作用。在不考虑阻尼的情况下所得出的某些。在不考虑阻尼的情况下所得出的某些结论也反应了结构的振动规律,如:结论也反应了结构的振动规律,如:事实上,由于非弹性力的存在,自由振动会衰减直到停止;共振时振幅也事实上,由于非弹性力的存在,自由振动会衰减直到停止;共振时振幅也不会无限增大,而是一个有限值。不会无限增大,而是一个有限值。非弹性力起着减小振幅的作用,使振动衰减,因此,为了进一步了解结构非弹性力起着减小振幅的作用,使振动衰减,因此,为了进一步了解结构的振动规律,就要研究阻尼。的振动规律,就要研究阻尼。1 1、阻尼的存在、阻尼的存在忽略阻尼的振动规律忽略阻尼的振动规律考虑阻尼的振动规律考虑阻尼的振动规律结构的自振频率是结构的固有特性,与外因无关。结构的自振频率是结构的固有特性,与外因无关。简谐荷载作用下有可能出现共振。简谐荷载作用下有可能出现共振。自由振动的振幅永不衰减。自由振动的振幅永不衰减。自由振动的振幅逐渐衰减。自由振动的振幅逐渐衰减。共振时的振幅趋于无穷大。共振时的振幅趋于无穷大。共振时的振幅较大但为有限值。共振时的振幅较大但为有限值。20第20页,本讲稿共21页2 2、在建筑物中产生阻尼、耗散能量的因素、在建筑物中产生阻尼、耗散能量的因素1 1)结构在变形过程中材料内部有摩擦,称)结构在变形过程中材料内部有摩擦,称“内摩擦内摩擦”,耗散能量;,耗散能量;2 2)建筑物基础的振动引起土壤发生振动,此振动以波的形式向周围扩散,)建筑物基础的振动引起土壤发生振动,此振动以波的形式向周围扩散,振动波在土壤中传播而耗散能量;振动波在土壤中传播而耗散能量;3 3)土体内摩擦、支座上的摩擦、结点上的摩擦和空气阻尼等等。)土体内摩擦、支座上的摩擦、结点上的摩擦和空气阻尼等等。振动的衰减和能量的耗散都通过非弹性力来考虑,由于对非弹性力的描述振动的衰减和能量的耗散都通过非弹性力来考虑,由于对非弹性力的描述不同,目前主要有两种阻尼理论:不同,目前主要有两种阻尼理论:*粘滞阻尼理论粘滞阻尼理论非弹性力与变形速度成正比:非弹性力与变形速度成正比:*滞变阻尼理论滞变阻尼理论关于阻尼,有两种定义或理解:关于阻尼,有两种定义或理解:1 1)使振动衰减的作用;)使振动衰减的作用;2 2)使能量耗散。)使能量耗散。3 3、阻尼力的确定:、阻尼力的确定:总与质点速度反向;大小与质点速度有如下关系:总与质点速度反向;大小与质点速度有如下关系:1 1)与质点速度成正比(比较常用,称为粘滞阻尼)。)与质点速度成正比(比较常用,称为粘滞阻尼)。2 2)与质点速度平方成正比(如质点在流体中运动受到的阻力)。)与质点速度平方成正比(如质点在流体中运动受到的阻力)。3 3)与质点速度无关(如摩擦力)。)与质点速度无关(如摩擦力)。其他阻尼力也可化为等效粘滞阻尼力来分析。其他阻尼力也可化为等效粘滞阻尼力来分析。21第21页,本讲稿共21页

    注意事项

    本文(结构的动力学计算优秀课件.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开