直线的交点坐标与距离公式精.ppt
直线的交点坐标与距离公式第1页,本讲稿共46页主要内容3.3.2 两点间的距离3.3.3 点到直线的距离3.3.1 两条直线的交点坐标3.3.4两条平行直线间的距离第2页,本讲稿共46页3.3.13.3.1两条直线的交点坐标两条直线的交点坐标第3页,本讲稿共46页 一般地,若直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0相交,如何求其交点坐标?用代数方法求两条直线的交点坐标,只需写出这两条直线的方程,然后联立求解.第4页,本讲稿共46页几何概念与代数表示几何元素及关系几何元素及关系代数表示代数表示点点A A直线直线l点点A A在直线在直线l上上直线直线l1 1与与l2 2的交点是的交点是A AA A的坐标满足方程的坐标满足方程A A的坐标是方程组的解的坐标是方程组的解第5页,本讲稿共46页 对于两条直线 和 ,若方程组 有唯一解,有无数组解,无解,则两直线的位有唯一解,有无数组解,无解,则两直线的位置关系如何?置关系如何?两直线有一个交点,重合、平行第6页,本讲稿共46页例1.求下列两条直线的交点坐标第7页,本讲稿共46页当当 变化时,方程变化时,方程表示什么图形?图形有何特点?表示什么图形?图形有何特点?表示的直线包括过交点表示的直线包括过交点M M(-2-2,2 2)的一族直线)的一族直线第8页,本讲稿共46页 例例2 2 判断下列各对直线的位置关系,如果相交,判断下列各对直线的位置关系,如果相交,求出其交点的坐标求出其交点的坐标.(1 1)(2 2)(3 3)第9页,本讲稿共46页 例例3 3 求经过两直线求经过两直线3x+2y+1=0 3x+2y+1=0 和和 2x-3y+5=02x-3y+5=0的交点,的交点,且斜率为且斜率为3 3的直线方程的直线方程.第10页,本讲稿共46页 例4.设直线y=k(x+3)-2和x+4y-4=0相交,且交点P在第一象限,求k的取值范围.x xy yo oB BA AP P第11页,本讲稿共46页小结 1.求两条直线的交点坐标 2.任意两条直线可能只有一个公共点,也可能没有公共点(平行)3.任意给两个直线方程,其对应的方程组得解有三种可能可能:1)有惟一解 2)无解 3)无数多解 4.直线族方程的应用第12页,本讲稿共46页作业P109 习题3.3A组:1,3,5.P110 习题3.3B组:1.第13页,本讲稿共46页3.3.23.3.2两点间的距离两点间的距离第14页,本讲稿共46页 已知平面上两点已知平面上两点P P1 1(x(x1 1,y y1 1)和和P P2 2(x(x2 2,y y2 2),如何点,如何点P P1 1和和P P2 2的距离的距离|P|P1 1P P2 2|?xyP1(x1,y1)P2(x2,y2)O第15页,本讲稿共46页两点间距离公式推导xyP1(x1,y1)P2(x2,y2)Q(x2,y1)Ox2y2x1y1第16页,本讲稿共46页两点间距离公式特别地,点P(x,y)到原点(0,0)的距离为 一般地,已知平面上两点P1(x1,)和P2(x2,y2),利用上述方法求点P1和P2的距离为第17页,本讲稿共46页 例例1 1 已知点已知点 和和 ,在在x x轴上轴上求一点求一点P P,使,使|PA|=|PB|PA|=|PB|,并求,并求|PA|PA|的值的值.第18页,本讲稿共46页 例例2 2 证明平行四边形四条边的平方和等于两条对角线证明平行四边形四条边的平方和等于两条对角线的平方和的平方和.xyA(0,0)A(0,0)B(a,0)B(a,0)C C(a+b,c)(a+b,c)D(b,c)D(b,c)证明:以A为原点,AB为x轴建立直角坐标系.则四个顶点坐标为A(0,0),B(a,0),D(b,c),C(a+b,c)建立坐标系,用坐标表示有关的量。第19页,本讲稿共46页xyABCD(0,0)(a,0)(b,c)(a+b,c)因此,平行四边形四条边的平方和等于两条对角线的因此,平行四边形四条边的平方和等于两条对角线的平方和平方和.例2题解第20页,本讲稿共46页 用用“坐标法坐标法”解决有关几何问题的基本步骤:解决有关几何问题的基本步骤:第一步;建立坐标系,用坐标系表示有关的量第二步:进行有关代数运算第三步:把代数运算结果“翻译”成几何关系第21页,本讲稿共46页小结1.两点间距离公式2.坐标法第一步:建立坐标系,用坐标表示有关的量第二步:进行有关代数运算第三步:把代数运算结果翻译成几何关系第22页,本讲稿共46页拓展 已知平面上两点P1(x1,y1)和P2(x2,y2),直线P1P2的斜率为k,则 y2-y1可怎样表示?从而点P1和P2的距离公式可作怎样的变形?第23页,本讲稿共46页 例3 设直线2x-y+1=0与抛物线 相交于A、B两点,求|AB|的值.第24页,本讲稿共46页 P106练习:1,2.P110习题3.3 A组:6,7,8.作业作业第25页,本讲稿共46页3.3.3点到直线的距离点到直线的距离第26页,本讲稿共46页 已知点已知点P P0 0(x(x0 0,y y0 0)和直线和直线l:Ax+By+C=0Ax+By+C=0,如何求,如何求点点P P到直线到直线 l 的距离?的距离?x xo oP P0 0Q Qly y 点点P P到直线到直线 l 的距离,是指从点的距离,是指从点P P0 0到直线到直线 l 的垂线的垂线段段P P0 0Q Q的长度,其中的长度,其中Q Q是垂足是垂足第27页,本讲稿共46页分析思路一:直接法分析思路一:直接法直线直线 的方程的方程直线直线 的斜率的斜率直线直线 的方程的方程直线直线 的方程的方程点点 之间的距离之间的距离 (点(点 到到 的距离)的距离)点点 的坐标的坐标直线直线 的斜率的斜率点点 的坐标的坐标点点 的坐标的坐标x xy yO O第28页,本讲稿共46页xyO面积法求出面积法求出P0Q 求出点求出点R 的坐标的坐标求出点求出点S 的坐标的坐标利用勾股定理求出利用勾股定理求出SR 分析思路二:用直角三角形的面积间接求法RSd求出求出P0R 求出求出P0S 第29页,本讲稿共46页xyP0(x0,y0)Ox0y0SRQd第30页,本讲稿共46页点到直线的距离公式点到直线的距离公式点点P(xP(x0 0,y y0 0)到直线到直线 l:Ax+By+C=0Ax+By+C=0的距离为:的距离为:特别地,当A=0,B0时,直线By+C=0特别地,当B=0,A0时,直线Ax+C=0第31页,本讲稿共46页xyP0(x0,y0)O|x1-x0|y1-y0|x0y0y1x1第32页,本讲稿共46页点到坐标轴的距离xyP0(x0,y0)O|y0|x0|x0y0第33页,本讲稿共46页 例例1.1.求点求点 到直线到直线 的距离的距离解:解:思考:还有其他解法吗?第34页,本讲稿共46页 例例2 2 已知点已知点 ,求,求 的面积的面积分析:如图,设 边上的高为 ,则y1234xO-1123 边上的高边上的高 就是点就是点 到到 的距离的距离第35页,本讲稿共46页y1234xO-1123即:即:点点 到到 的距离的距离因此因此解:解:边所在直线的方程为:边所在直线的方程为:第36页,本讲稿共46页小结点到直线的距离公式的推导及其应用点P(x0,y0)到直线l:Ax+By+C=0的距离为:第37页,本讲稿共46页作业作业 P110习题3.3A组:8,9.3.3B组:2,4第38页,本讲稿共46页3.3.4两条平行直线间的距两条平行直线间的距离离第39页,本讲稿共46页 两条平行直线间的距离是指夹在两条平两条平行直线间的距离是指夹在两条平行线间公垂线段的长行线间公垂线段的长两平行线间的距离处处相等两平行线间的距离处处相等第40页,本讲稿共46页1.怎样判断两条直线是否平行?怎样判断两条直线是否平行?2.2.设设l1 1/l2 2,如何求,如何求l1 1和和l2 2间的距离?间的距离?1 1)能否将平行直线间的距离转化为点到直线)能否将平行直线间的距离转化为点到直线的距离?的距离?2)2)如何取点,可使计算简单?如何取点,可使计算简单?第41页,本讲稿共46页 例例1 1 已知直线已知直线 和和 l1 1 与与l2 2 是否平行?若平行是否平行?若平行,求求 l1 1与与 l2 2的距离的距离.第42页,本讲稿共46页例例2 2 求平行线求平行线2x-7y+8=0与与2x-7y-6=0的距离的距离.两平行线间的距两平行线间的距离处处相等离处处相等在在l2 2上任取一点,如上任取一点,如P(3,0)P(3,0)P P到到l1 1的距离等于的距离等于l1 1与与l2 2的距离的距离直线到直线的距离转化为点到直线的距离直线到直线的距离转化为点到直线的距离解:解:第43页,本讲稿共46页 例例3.3.求证:两条平行直线求证:两条平行直线Ax+By+C1=0和和Ax+By+C2=0间的距离为间的距离为第44页,本讲稿共46页解:设解:设P(P(x x,0),0),根据根据P P到到l1、l2距离相等,列式为距离相等,列式为所以所以P P点坐标为:点坐标为:例例4 4 已知已知P P在在x 轴上轴上,P,P到直线到直线l1:x-y+7=0与直与直线线 l2:12x-5y+40=0 的距离相等的距离相等,求求P P点坐标。点坐标。第45页,本讲稿共46页小结1.两条平行直线间距离的求法 转化为点到直线的距离转化为点到直线的距离2.2.两条平行直线间距离公式第46页,本讲稿共46页