欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    平面与平面平行的判定公开课优秀PPT.ppt

    • 资源ID:65267824       资源大小:2.76MB        全文页数:38页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    平面与平面平行的判定公开课优秀PPT.ppt

    平面与平面平行的判定公开课课件你现在浏览的是第一页,共38页复习复习1 1:平面几何中证明两直线平行有些什么方:平面几何中证明两直线平行有些什么方 法?法?复习复习2 2:直:直线与平面平行的判定方法?线与平面平行的判定方法?复习复习3 3:两个平面的位置关系?:两个平面的位置关系?复习回顾复习回顾你现在浏览的是第二页,共38页判定平面内两直线平行的方法判定平面内两直线平行的方法:1 1、内错角相等、同位角相等、同旁内角互补。、内错角相等、同位角相等、同旁内角互补。2 2、三角形和梯形的中位线性质。、三角形和梯形的中位线性质。3 3、平行四边形的性质、平行四边形的性质4 4、线段成比例、线段成比例复习回顾复习回顾你现在浏览的是第三页,共38页复习复习1 1:平面几何中证明两直线平行有些什么方:平面几何中证明两直线平行有些什么方 法?法?复习复习2 2:直:直线与平面平行的判定方法?线与平面平行的判定方法?复习复习3 3:两个平面的位置关系?:两个平面的位置关系?复习回顾复习回顾你现在浏览的是第四页,共38页复习回顾:复习回顾:平面平面外外一条直线与此平面一条直线与此平面内内的一条直线的一条直线平行平行,则该直线与此平,则该直线与此平面平行面平行(2 2)直线与平面平行的判定定理:)直线与平面平行的判定定理:(1 1)定义法;)定义法;直线与平面没有交点直线与平面没有交点线线平行线线平行线面平行线面平行1.1.到现在为止到现在为止,我们一共学习过几种判断直线与平面平行的方法呢我们一共学习过几种判断直线与平面平行的方法呢?(文字语言文字语言)(符号语言符号语言)(图形语言图形语言)外外平行平行内内你现在浏览的是第五页,共38页复习复习1 1:平面几何中证明两直线平行有些什么方:平面几何中证明两直线平行有些什么方 法?法?复习复习2 2:直:直线与平面平行的判定方法?线与平面平行的判定方法?复习复习3 3:两个平面的位置关系?:两个平面的位置关系?复习回顾复习回顾你现在浏览的是第六页,共38页(1 1)平行)平行(2 2)相交)相交2.2.平面与平面有几种位置关系?分别是什么?平面与平面有几种位置关系?分别是什么?复习回顾复习回顾你现在浏览的是第七页,共38页你现在浏览的是第八页,共38页你现在浏览的是第九页,共38页你现在浏览的是第十页,共38页你现在浏览的是第十一页,共38页一个木工师傅要从一个木工师傅要从A A处锯开一个三棱锥木料,处锯开一个三棱锥木料,要使截面和底面平行,想请你帮他画线,你会画吗?要使截面和底面平行,想请你帮他画线,你会画吗?创设情景创设情景 孕育新知孕育新知A你现在浏览的是第十二页,共38页 判定方法判定方法1:定义法:定义法如果两平面没有公共点,那么两平面平行如果两平面没有公共点,那么两平面平行 实质实质:其中一个平面内任何一条直线都平行:其中一个平面内任何一条直线都平行于另一平面于另一平面 平面与平面平行的判定方法平面与平面平行的判定方法师生协助师生协助 探索新知探索新知 不可能把其中一个平面内所有直线不可能把其中一个平面内所有直线都取出逐一证明其平行另一平面。都取出逐一证明其平行另一平面。你现在浏览的是第十三页,共38页1 1、平面、平面内有内有一条直线一条直线与平面与平面平行,平面平行,平面,一定平行吗?一定平行吗?(不一定)(不一定)你现在浏览的是第十四页,共38页1 1、平面、平面内有内有一条直线一条直线与平面与平面平行,平面平行,平面,一定平行吗?一定平行吗?(不一定)(不一定)2 2、平面、平面内有内有两条直线两条直线与平面与平面平行,平面平行,平面,一定平行吗?一定平行吗?平面内两条直线位置关系有平行和相交两种哦!你现在浏览的是第十五页,共38页一平面内两条一平面内两条平行直线平行直线都平行于另一平面都平行于另一平面两平面位置关系?两平面位置关系?你现在浏览的是第十六页,共38页1 1、平面、平面内有内有一条直线一条直线与平面与平面平行,平面平行,平面,一定平行吗?一定平行吗?(不一定)(不一定)2 2、平面、平面内有内有两条直线两条直线与平面与平面平行,平面平行,平面,一定平行吗?一定平行吗?两平行直线两平行直线 (不一定)(不一定)两相交直线两相交直线 (?)?)你现在浏览的是第十七页,共38页一平面内两条一平面内两条相交直线相交直线都平行于另一平面都平行于另一平面两平面位置关系?两平面位置关系?你现在浏览的是第十八页,共38页你现在浏览的是第十九页,共38页你现在浏览的是第二十页,共38页判定方法判定方法2:平面与平面平行的判定定理平面与平面平行的判定定理:符号表示符号表示:如果如果一个平面一个平面内内的两条相的两条相交交直线与另一个平面直线与另一个平面平行平行,则这两,则这两个平面平行个平面平行.P内内交交平行平行师生协助师生协助 探索新知探索新知线面平行线面平行面面平行面面平行你现在浏览的是第二十一页,共38页例例1:判断下列命题是否正确,并说明理由:判断下列命题是否正确,并说明理由(1)若平面)若平面内的两条直线分别与平面内的两条直线分别与平面平行,则平行,则与与平行;平行;(2)若平面)若平面内有无数条直线分别与平面内有无数条直线分别与平面平行,则平行,则与与平行;平行;合作交流合作交流 运用新知运用新知(3 3)、一个平面)、一个平面 内两条不平行的直线都平行于内两条不平行的直线都平行于 平面,则平面,则 与与 平行。平行。(4)、如果一个平面内的任何一条直线都平行于另一个、如果一个平面内的任何一条直线都平行于另一个平面,那么这两个平面平行。平面,那么这两个平面平行。(5)如如果果一一个个平平面面内内的的一一条条直直线线平平行行于于另另一一个个平平面面,那那么这两个平面平行么这两个平面平行你现在浏览的是第二十二页,共38页直线的条数不是关键直线的条数不是关键直线相交才是关键直线相交才是关键你现在浏览的是第二十三页,共38页定理的理解定理的理解:练习练习.(课本练习第(课本练习第1题)题)1判断下列命题是否正确,正确的判断下列命题是否正确,正确的说明理由,错误的举例说明:说明理由,错误的举例说明:(1)已知平面已知平面 和直线和直线,若若 ,则,则(2)一个平面一个平面 内两条不平行的直线都平行于另一平内两条不平行的直线都平行于另一平面面 ,则,则错误错误正确正确mnP你现在浏览的是第二十四页,共38页2、(、(课本练习第课本练习第3题题)平面和平面平行的条件可以是(平面和平面平行的条件可以是()(A)内有无数多条直线都与内有无数多条直线都与 平行平行(B)直线直线 ,(C)直线直线 ,直线,直线 ,且,且(D)内的任何一条直线都与内的任何一条直线都与 平行平行D定理的理解定理的理解:你现在浏览的是第二十五页,共38页阅读阅读(课本(课本5757页例页例2 2)、)、已知正方体已知正方体ABCD-A1B1C1D1,求证:平面求证:平面AB1D1 平面平面C1BD.合作交流合作交流 运用新知运用新知你现在浏览的是第二十六页,共38页证明:证明:ABCD-A1B1C1D1是正方体是正方体,D1C1/A1B1,D1C1=A1B1,AB/A1B1,AB=A1B1,D1C1/AB,D1C1=AB,四边形四边形D1C1BA为平行四边形为平行四边形,D1A/C1B,又又D1A平面平面C1BD,C1B平面平面C1BD,D1A/平面平面C1BD,同理同理D1B1/平面平面C1BD,又又D1AD1B1=D1,D1A平面平面AB1D1,D1B1平面平面AB1D1,平面平面AB1D1/平面平面C1BD.你现在浏览的是第二十七页,共38页例例3 如图,在正方体ABCDA1B1C1D1中,E、F、G分别是棱BC、C1D1、C1B1的中点。求证:面EFG/平面BDD1B1.G证明:证明:F F、G G分别的分别的C C1 1D D1 1、C C1 1B B1 1的中点的中点 FGFG是是C C1 1D D1 1B B1 1的中位线的中位线 FGDFGD1 1B B1 1 又又 FG FG 平面平面BDDBDD1 1B B1 1 D D1 1B BI I 平面平面BDDBDD1 1B B1 1 FG FG平面平面BDDBDD1 1B B1 1 ABCD ABCDA A1 1B B1 1C C1 1D D1 1为正方体为正方体 B B1 1C C1 1BCBC,B B1 1C C1 1BCBC 又又 G G、E E分别是分别是B B1 1C C1 1、BCBC的中点的中点 B B1 1GBE BGBE B1 1G=BEG=BE 四边形四边形B B1 1BEGBEG是平行四边形是平行四边形 GEBGEB1 1B B 又又 GE GE 平面平面BDDBDD1 1B B1 1 B B1 1B B 平面平面BDDBDD1 1B B1 1 GE GE 平面平面BDDBDD1 1B B1 1 又又 FG GE=GFG GE=G 面面EFG/EFG/平面平面BDDBDD1 1B B1 1.思路:只要证明一个平面内有两条相交的直线与另一个平面平行你现在浏览的是第二十八页,共38页第一步第一步:在一个平面内找出两条相交直线;:在一个平面内找出两条相交直线;第二步第二步:证明两条相交直线分别平行于另一个平面。:证明两条相交直线分别平行于另一个平面。第三步第三步:利用判定定理得出结论。:利用判定定理得出结论。面面平行面面平行线线平行线线平行线面平行线面平行3 3、证明的书写三个条件证明的书写三个条件“内内”、“交交”、“平行平行”,缺一缺一不可。不可。1、证明的两个平面平行的基本思路:、证明的两个平面平行的基本思路:2、证明的两个平面平行的一般步骤:、证明的两个平面平行的一般步骤:你现在浏览的是第二十九页,共38页1 1、在正方体、在正方体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1中,若中,若 M M、N N、E E、F F分别是棱分别是棱A A1 1B B1 1,A A1 1D D1 1,B B1 1C C1 1,C C1 1D D1 1的中点,求证:平面的中点,求证:平面AMN/AMN/平面平面EFDBEFDB。变式训练变式训练ABCA1B1C1D1DMNEF(课本练习第(课本练习第2题)题)你现在浏览的是第三十页,共38页2 2、已知、已知:在正方体在正方体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1中中,E,E、F F分别是分别是CCCC1 1、AAAA1 1的中点,求证的中点,求证:平面平面BDE/BDE/平面平面B B1 1D D1 1F FAD1DCBA1B1C1EFG变式训练变式训练你现在浏览的是第三十一页,共38页D1C1B1A1DCBA变式训练变式训练3、已知正方体、已知正方体ABCD-A1B1C1D1,求证:平面,求证:平面AB1C 平面平面A1C1D你现在浏览的是第三十二页,共38页4.4.正方体正方体 ABCD-AABCD-A1 1B B1 1C C1 1D D1 1 中中,求证求证:平面平面ABAB1 1D D1 1/平面平面C C1 1BDBDAD1DCBA1B1C1变式训练变式训练你现在浏览的是第三十三页,共38页5 5、如图三棱锥、如图三棱锥P-ABC,D,E,FP-ABC,D,E,F分别是棱分别是棱PAPA,PBPB,PCPC上的点,上的点,求证:平面求证:平面DEFDEF平面平面ABCABC。PDEFBCA变式训练变式训练你现在浏览的是第三十四页,共38页NMFEDCBAH6、如图所示,平面如图所示,平面ABCD平面平面EFCD=CD,M、N、H分别是分别是DC、CF、CB的中点,的中点,求证求证平面平面MNH/平面平面DBF你现在浏览的是第三十五页,共38页2、一个木匠师傅要从、一个木匠师傅要从A处锯开一个三棱锥木料,处锯开一个三棱锥木料,要使截面和底面平行,想请你帮他画线,你会画吗?要使截面和底面平行,想请你帮他画线,你会画吗?运用新知运用新知 解决问题解决问题A你现在浏览的是第三十六页,共38页2、一个木匠师傅要从、一个木匠师傅要从A处锯开一个三棱锥木料,处锯开一个三棱锥木料,要使截面和底面平行,想请你帮他画线,你会画吗?要使截面和底面平行,想请你帮他画线,你会画吗?运用新知运用新知 解决问题解决问题A你现在浏览的是第三十七页,共38页运用新知运用新知 解决问题解决问题你现在浏览的是第三十八页,共38页

    注意事项

    本文(平面与平面平行的判定公开课优秀PPT.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开