【创新设计】(浙江专用)2016届高考数学一轮复习 2-2函数的单调性与最值课件 理.ppt
-
资源ID:65268059
资源大小:753KB
全文页数:38页
- 资源格式: PPT
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
【创新设计】(浙江专用)2016届高考数学一轮复习 2-2函数的单调性与最值课件 理.ppt
基础诊断基础诊断考点突破考点突破课堂总结课堂总结第2讲函数的单调性与最值基础诊断基础诊断考点突破考点突破课堂总结课堂总结最新考纲1.理解函数的单调性、最大值、最小值及其几何意义;2.会运用函数图象理解和研究函数的单调性基础诊断基础诊断考点突破考点突破课堂总结课堂总结知 识 梳 理1函数的单调性 (1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1x2时,都有 ,那么就说函数f(x)在区间D上是增函数当x1x2时,都有 ,那么就说函数f(x)在区间D上是减函数f(x1)f(x2)f(x1)f(x2)基础诊断基础诊断考点突破考点突破课堂总结课堂总结图象描述自左向右看图象是 自左向右看图象是 上升的下降的 基础诊断基础诊断考点突破考点突破课堂总结课堂总结增函数 减函数 区间D 基础诊断基础诊断考点突破考点突破课堂总结课堂总结2函数的最值前提设函数yf(x)的定义域为I,如果存在实数M满足条件(1)对于任意xI,都有 ;(2)存在x0I,使得f(x0)M.(3)对于任意xI,都有 ;(4)存在x0I,使得 结论M为最大值M为最小值f(x)Mf(x)Mf(x0)M.基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结3(2015东北三省四市联考)下列函数中,在(0,)上单调递减,并且是偶函数的是()Ayx2 Byx3Cylg|x|Dy2x解析四个函数中,是偶函数的有A,C;又yx2在(0,)内单调递增,排除A,故选C.答案C基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结规律方法判断函数单调性的常用方法:(1)定义法和导数法,注意证明函数单调性只能用定义法和导数法;(2)图象法,由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集:二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“”连接基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结规律方法已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间a,b上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结解析作出函数f(x)的图象如图所示,由图象可知f(x)在(a,a1)上单调递增,需满足a4或a12,即a1或a4,故选D.答案D基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结规律方法利用函数的单调性求函数的最大(小)值,即如果函数yf(x)在区间a,b上单调递增,在区间b,c上单调递减,则函数yf(x)在区间a,c上的最大值是f(b);如果函数yf(x)在区间a,b上单调递减,在区间b,c上单调递增,则函数yf(x)在区间a,c上的最小值是f(b)另外,求函数最值的常用方法还有:(1)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值(2)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结2求函数的单调区间首先应注意函数的定义域,函数的单调区间都是其定义 域的子集;其次掌握一次函数、二次函数等基本初等函数的单调区间常用方法:根据定义、利用图象和单调函数的性质、利用导函数基础诊断基础诊断考点突破考点突破课堂总结课堂总结3复合函数的单调性对于复合函数yfg(x),若tg(x)在区间(a,b)上是单调函数,且yf(t)在区间(g(a),g(b)或者(g(b),g(a)上是单调函数,若tg(x)与yf(t)的单调性相同(同时为增或减),则yfg(x)为增函数;若tg(x)与yf(t)的单调性相反,则yfg(x)为减函数简称:同增异减基础诊断基础诊断考点突破考点突破课堂总结课堂总结易错防范1函数的单调性是通过任意两点的变化趋势来刻画整体的变化趋势,“任意”两个字是必不可少的如果只用其中两点的函数值(比如说端点值)进行大小比较是不能确定函数的单调性的2讨论函数单调性必须在其定义域内进行,函数的单调区间是其定义域的子集,因此,讨论函数的单调性时,应先确定函数的定义域基础诊断基础诊断考点突破考点突破课堂总结课堂总结3函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减单调区间要分开写,即使在两个区间上的单调性相同,也不能用并集表示.