欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    模拟退火算法详解优秀PPT.ppt

    • 资源ID:65270900       资源大小:3MB        全文页数:51页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    模拟退火算法详解优秀PPT.ppt

    模拟退火算法详解你现在浏览的是第一页,共51页3.1 模拟退火算法及模型模拟退火算法及模型 3.1.1 3.1.1 物理退火过程物理退火过程物理退火过程物理退火过程 3.1.2 3.1.2 组合优化与物理退火的相似性组合优化与物理退火的相似性组合优化与物理退火的相似性组合优化与物理退火的相似性 3.1.3 3.1.3 模拟退火算法的基本思想和步骤模拟退火算法的基本思想和步骤模拟退火算法的基本思想和步骤模拟退火算法的基本思想和步骤 3.2 模拟退火算法的马氏链描述模拟退火算法的马氏链描述 3.2.1 3.2.1 马尔可夫链马尔可夫链马尔可夫链马尔可夫链 3.2.2 3.2.2 模拟退火算法与马尔可夫链模拟退火算法与马尔可夫链模拟退火算法与马尔可夫链模拟退火算法与马尔可夫链 3.3 模拟退火算法的关键参数和操作的设计模拟退火算法的关键参数和操作的设计 3.3.1 3.3.1 状态产生函数状态产生函数状态产生函数状态产生函数 3.3.2 3.3.2 状态接受函数状态接受函数状态接受函数状态接受函数 3.3.3 3.3.3 初温初温初温初温 3.3.4 3.3.4 温度更新函数温度更新函数温度更新函数温度更新函数 3.3.5 3.3.5 内循环终止准则内循环终止准则内循环终止准则内循环终止准则 3.3.6 3.3.6 外循环终止准则外循环终止准则外循环终止准则外循环终止准则 现代优化计算现代优化计算你现在浏览的是第二页,共51页3.4 模拟退火算法的改进模拟退火算法的改进 3.4.1 3.4.1 模拟退火算法的优缺点模拟退火算法的优缺点模拟退火算法的优缺点模拟退火算法的优缺点 3.4.2 3.4.2 改进内容改进内容改进内容改进内容 3.4.3 3.4.3 一种改进的模拟退火算法一种改进的模拟退火算法一种改进的模拟退火算法一种改进的模拟退火算法3.5 模拟退火算法实现与应用模拟退火算法实现与应用 3.5.1 303.5.1 30城市城市城市城市TSPTSP问题(问题(问题(问题(d*=423.741 by D B Fogeld*=423.741 by D B Fogel)3.5.2 3.5.2 模拟退火算法在管壳式换热器优化设计中的应用模拟退火算法在管壳式换热器优化设计中的应用模拟退火算法在管壳式换热器优化设计中的应用模拟退火算法在管壳式换热器优化设计中的应用现代优化计算现代优化计算你现在浏览的是第三页,共51页3.1 模拟退火算法及模型模拟退火算法及模型 现代优化计算现代优化计算w算法的提出算法的提出 模拟退火算法最早的思想由模拟退火算法最早的思想由Metropolis等(等(1953)提)提出,出,1983年年Kirkpatrick等将其应用于组合优化。等将其应用于组合优化。w算法的目的算法的目的 解决解决NP复杂性复杂性问题;问题;克服优化过程陷入局部极小;克服优化过程陷入局部极小;克服初值依赖性。克服初值依赖性。3.1.1 物理退火过程物理退火过程你现在浏览的是第四页,共51页3.1 模拟退火算法及模型模拟退火算法及模型 现代优化计算现代优化计算w物理退火过程物理退火过程 什么是退火:什么是退火:退火是指将固体加热到足够高的温度,使分子呈随机退火是指将固体加热到足够高的温度,使分子呈随机排列状态,然后逐步降温使之冷却,最后分子以低能排列状态,然后逐步降温使之冷却,最后分子以低能状态排列,固体达到某种稳定状态。状态排列,固体达到某种稳定状态。3.1.1 物理退火过程物理退火过程你现在浏览的是第五页,共51页3.1 模拟退火算法及模型模拟退火算法及模型 现代优化计算现代优化计算w物理退火过程物理退火过程 加温过程加温过程增强粒子的热运动,消除系统原先可能增强粒子的热运动,消除系统原先可能存在的非均匀态;存在的非均匀态;等温过程等温过程对于与环境换热而温度不变的封闭系统,对于与环境换热而温度不变的封闭系统,系统状态的自发变化总是朝自由能减少的方向进行,当系统状态的自发变化总是朝自由能减少的方向进行,当自由能达到最小时,系统达到平衡态;自由能达到最小时,系统达到平衡态;冷却过程冷却过程使粒子热运动减弱并渐趋有序,系统能使粒子热运动减弱并渐趋有序,系统能量逐渐下降,从而得到低能的晶体结构。量逐渐下降,从而得到低能的晶体结构。3.1.1 物理退火过程物理退火过程你现在浏览的是第六页,共51页w热力学中的退火现象指物体逐渐降温时发生的物理热力学中的退火现象指物体逐渐降温时发生的物理現象:現象:温度越低,物体的能量状态越低,到达足够的低点时,温度越低,物体的能量状态越低,到达足够的低点时,液体开始冷凝与结晶,在结晶状态时,系统的能量状液体开始冷凝与结晶,在结晶状态时,系统的能量状态最低。缓慢降温(退火,态最低。缓慢降温(退火,annealing)时,可达到最)时,可达到最低能量状态;但如果快速降温(淬火,低能量状态;但如果快速降温(淬火,quenching),),会导致不是最低能态的非晶形。会导致不是最低能态的非晶形。w大自然知道大自然知道慢工出细活慢工出细活:缓缓降温,使得物体分子在每一温度时,能够有足够缓缓降温,使得物体分子在每一温度时,能够有足够时间找到安顿位置,则逐渐地,到最后可得到最低能时间找到安顿位置,则逐渐地,到最后可得到最低能态,系统最稳定。态,系统最稳定。3.1 模拟退火算法及模型模拟退火算法及模型 3.1.1 物理退火过程物理退火过程现代优化计算现代优化计算你现在浏览的是第七页,共51页w模仿自然界退火現象而得,利用了物理中固体物质的模仿自然界退火現象而得,利用了物理中固体物质的退火过程退火过程与一般与一般优化优化问题的相似性问题的相似性 从某一初始从某一初始温度温度开始,伴随温度的不断下降,结合开始,伴随温度的不断下降,结合概概率突跳率突跳特性在解空间中特性在解空间中随机随机寻找寻找全局最优解全局最优解3.1 模拟退火算法及模型模拟退火算法及模型 3.1.1 物理退火过程物理退火过程现代优化计算现代优化计算你现在浏览的是第八页,共51页3.1 模拟退火算法及模型模拟退火算法及模型 现代优化计算现代优化计算w数学表述数学表述 在温度在温度T,分子停留在状态,分子停留在状态r满足满足Boltzmann概率分布概率分布 3.1.1 物理退火过程物理退火过程你现在浏览的是第九页,共51页3.1 模拟退火算法及模型模拟退火算法及模型 现代优化计算现代优化计算w数学表述数学表述 在在同一个温度同一个温度T,选定两个能量,选定两个能量E1E2,有,有 3.1.1 物理退火过程物理退火过程0模拟退火算法基本思想模拟退火算法基本思想:在一定温度下,搜索从一个状态随机地:在一定温度下,搜索从一个状态随机地变化到另一个状态;随着温度的不断下降直到最低温度,搜索过程以概变化到另一个状态;随着温度的不断下降直到最低温度,搜索过程以概率率1停留在最优解停留在最优解你现在浏览的是第十页,共51页3.1 模拟退火算法及模型模拟退火算法及模型 3.1.1 物理退火过程物理退火过程现代优化计算现代优化计算wBoltzmanBoltzman概率分布概率分布告诉我们:告诉我们:(1)在同一个温度,分子停留在能量小状态的概率)在同一个温度,分子停留在能量小状态的概率大于停留在能量大状态的概率大于停留在能量大状态的概率 (2)温度越高,不同能量状态对应的概率相差越小;温度)温度越高,不同能量状态对应的概率相差越小;温度足够高时,各状态对应概率基本相同。足够高时,各状态对应概率基本相同。(3)随着温度的下降,能量最低状态对应概率越来越大;)随着温度的下降,能量最低状态对应概率越来越大;温度趋于温度趋于0时,其状态趋于时,其状态趋于1你现在浏览的是第十一页,共51页3.1 模拟退火算法及模型模拟退火算法及模型 现代优化计算现代优化计算w数学表述数学表述 若若|D|为状态空间为状态空间D中状态的个数,中状态的个数,D0是具有最低能量是具有最低能量的状态集合:的状态集合:当温度很高时,每个状态概率基本相同,接近平均值当温度很高时,每个状态概率基本相同,接近平均值1/|D|;状态空间存在超过两个不同能量时,具有最低能量状态空间存在超过两个不同能量时,具有最低能量状态的概率超出平均值状态的概率超出平均值1/|D|;当温度趋于当温度趋于0时,分子停留在最低能量状态的概率趋于时,分子停留在最低能量状态的概率趋于1。3.1.1 物理退火过程物理退火过程能量最低状态能量最低状态 非能量最低状态非能量最低状态你现在浏览的是第十二页,共51页3.1 模拟退火算法及模型模拟退火算法及模型 现代优化计算现代优化计算wMetropolis准则(准则(1953)以概率接受新状态以概率接受新状态 固体在恒定温度下达到热平衡的过程可以用固体在恒定温度下达到热平衡的过程可以用Monte Carlo方法方法(计算机随机模拟方法)加以模拟,虽然(计算机随机模拟方法)加以模拟,虽然该方法简单,但必须大量采样才能得到比较精确的结该方法简单,但必须大量采样才能得到比较精确的结果,计算量很大。果,计算量很大。3.1.1 物理退火过程物理退火过程你现在浏览的是第十三页,共51页3.1 模拟退火算法及模型模拟退火算法及模型 现代优化计算现代优化计算wMetropolis准则(准则(1953)以概率接受新状态以概率接受新状态 若在温度若在温度T,当前状态,当前状态i 新状态新状态j 若若Ej=randrom0,1 s=sj;Until 抽样稳定准则满足;抽样稳定准则满足;退温退温tk+1=update(tk)并令并令k=k+1;Until 算法终止准则满足;算法终止准则满足;输出算法搜索结果。输出算法搜索结果。3.1.3 模拟退火算法的基本思想和步骤模拟退火算法的基本思想和步骤你现在浏览的是第十七页,共51页3.1 模拟退火算法及模型模拟退火算法及模型 现代优化计算现代优化计算w影响优化结果的主要因素影响优化结果的主要因素 给定初温给定初温t=t0,随机产生初始状态,随机产生初始状态s=s0,令,令k=0;Repeat Repeat 产生新状态产生新状态sj=Genete(s);if min1,exp-(C(sj)-C(s)/tk=randrom0,1 s=sj;Until 抽样稳定准则满足;抽样稳定准则满足;退温退温tk+1=update(tk)并令并令k=k+1;Until 算法终止准则满足;算法终止准则满足;输出算法搜索结果。输出算法搜索结果。3.1.3 模拟退火算法的基本思想和步骤模拟退火算法的基本思想和步骤三函数两准则三函数两准则初始温度初始温度你现在浏览的是第十八页,共51页3.1 模拟退火算法及模型模拟退火算法及模型 现代优化计算现代优化计算 3.1.3 模拟退火算法的基本思想和步骤模拟退火算法的基本思想和步骤Step1 设定初始温度设定初始温度t=tmax,任选初始解任选初始解r=r0Step2 内循环内循环 Step2.1 从从r的邻域中随机选一个解的邻域中随机选一个解rt,计算计算r和和rt对应目标对应目标函函 数值数值,如如rt对应目标函数值较小,则令对应目标函数值较小,则令r=rt;否则若否则若 exp(-(E(rt)-E(r)/t)random(0,1),则令则令r=rt.Step2.2 不满足内循环停止条件时,重复不满足内循环停止条件时,重复Step2.1Step3 外循环外循环 Step3.1 降温降温t=decrease(t)Step3.2 如不满足外循环停止条件,则转如不满足外循环停止条件,则转Step2;否则算法结束;否则算法结束1.达到终止温度达到终止温度2.达到迭代次数达到迭代次数3.最优值连续若干步最优值连续若干步保持不变保持不变1.目标函数均值稳定目标函数均值稳定2.连续若干步的目标值变化连续若干步的目标值变化较小较小3.固定的抽样步数固定的抽样步数w模拟退火算法的步骤模拟退火算法的步骤你现在浏览的是第十九页,共51页3.2 模拟退火算法的马氏链描述模拟退火算法的马氏链描述 现代优化计算现代优化计算w定义定义 3.2.1 马尔科夫链马尔科夫链你现在浏览的是第二十页,共51页3.2 模拟退火算法的马氏链描述模拟退火算法的马氏链描述 现代优化计算现代优化计算w定义定义 一步转移概率:一步转移概率:n步转移概率:步转移概率:若解空间有限,称马尔可夫链为若解空间有限,称马尔可夫链为有限状态有限状态;若若 ,称马尔可夫链为,称马尔可夫链为时齐的时齐的。3.2.1 马尔科夫链马尔科夫链你现在浏览的是第二十一页,共51页3.2 模拟退火算法的马氏链描述模拟退火算法的马氏链描述 现代优化计算现代优化计算w模拟退火算法对应了一个马尔可夫链模拟退火算法对应了一个马尔可夫链 模拟退火算法:新状态接受概率仅依赖于新状态和当前模拟退火算法:新状态接受概率仅依赖于新状态和当前状态,并由温度加以控制。状态,并由温度加以控制。若固定每一温度,算法均计算马氏链的变化直至平稳若固定每一温度,算法均计算马氏链的变化直至平稳分布,然后下降温度,则称为分布,然后下降温度,则称为时齐算法时齐算法;若无需各温度下算法均达到平稳分布,但温度需按一若无需各温度下算法均达到平稳分布,但温度需按一定速率下降,则称为定速率下降,则称为非时齐算法非时齐算法。w分析收敛性分析收敛性 3.2.2 模拟退火算法与马尔科夫链模拟退火算法与马尔科夫链你现在浏览的是第二十二页,共51页3.3 模拟退火算法关键参数和操作的设计模拟退火算法关键参数和操作的设计现代优化计算现代优化计算w原则原则 产生的候选解应遍布全部解空间产生的候选解应遍布全部解空间w方法方法 在当前状态的邻域结构内以一定概率方式(均匀分布、在当前状态的邻域结构内以一定概率方式(均匀分布、正态分布、指数分布等)产生正态分布、指数分布等)产生 3.3.1 3.3.1 状态产生函数状态产生函数状态产生函数状态产生函数你现在浏览的是第二十三页,共51页3.3 模拟退火算法关键参数和操作的设计模拟退火算法关键参数和操作的设计现代优化计算现代优化计算w原则原则 (1)在固定温度下,接受使目标函数下降的候选解的概在固定温度下,接受使目标函数下降的候选解的概率要大于使目标函数上升的候选解概率;率要大于使目标函数上升的候选解概率;(2)随温度的下降,接受使目标函数上升的解的概率要逐随温度的下降,接受使目标函数上升的解的概率要逐渐减小;渐减小;(3)当温度趋于零时,只能接受目标函数下降的解。当温度趋于零时,只能接受目标函数下降的解。w方法方法 具体形式对算法影响不大具体形式对算法影响不大 一般采用一般采用min1,exp(-C/t)3.3.2 状态接受函数状态接受函数你现在浏览的是第二十四页,共51页3.3 模拟退火算法关键参数和操作的设计模拟退火算法关键参数和操作的设计现代优化计算现代优化计算w收敛性分析收敛性分析 通过理论分析可以得到初温的解析式,但解决实际问题通过理论分析可以得到初温的解析式,但解决实际问题时难以得到精确的参数;时难以得到精确的参数;初温应充分大;初温应充分大;w实验表明实验表明 初温越大,获得高质量解的机率越大,但花费较多初温越大,获得高质量解的机率越大,但花费较多的计算时间;的计算时间;3.3.3 初温初温你现在浏览的是第二十五页,共51页3.3 模拟退火算法关键参数和操作的设计模拟退火算法关键参数和操作的设计现代优化计算现代优化计算w方法方法 (1)均匀抽样一组状态,以各状态目标值得方差为初)均匀抽样一组状态,以各状态目标值得方差为初温;温;(2)随机产生一组状态,确定两两状态间的最大目)随机产生一组状态,确定两两状态间的最大目标值差,根据差值,利用一定的函数确定初温;标值差,根据差值,利用一定的函数确定初温;(3)利用经验公式。)利用经验公式。3.3.3 3.3.3 初温初温初温初温你现在浏览的是第二十六页,共51页3.3 模拟退火算法关键参数和操作的设计模拟退火算法关键参数和操作的设计现代优化计算现代优化计算w时齐算法的温度下降函数时齐算法的温度下降函数 (1),越接近越接近1 1温度下降越慢,且其大温度下降越慢,且其大小可以不断变化;小可以不断变化;(2),其中,其中t0为起始温度,为起始温度,K为算法温度下降为算法温度下降的总次数。的总次数。3.3.4 温度更新函数温度更新函数你现在浏览的是第二十七页,共51页3.3 模拟退火算法关键参数和操作的设计模拟退火算法关键参数和操作的设计现代优化计算现代优化计算w非时齐模拟退火算法非时齐模拟退火算法 每个温度下只产生一个或少量候选解每个温度下只产生一个或少量候选解w时齐算法时齐算法常用的常用的Metropolis抽样稳定准则抽样稳定准则 (1)检验目标函数的均值是否稳定;)检验目标函数的均值是否稳定;(2)连续若干步的目标值变化较小;)连续若干步的目标值变化较小;(3)按一定的步数抽样。)按一定的步数抽样。3.3.5 3.3.5 内循环终止准则内循环终止准则内循环终止准则内循环终止准则你现在浏览的是第二十八页,共51页3.3 模拟退火算法关键参数和操作的设计模拟退火算法关键参数和操作的设计现代优化计算现代优化计算w常用方法常用方法 (1)设置终止温度的阈值;)设置终止温度的阈值;(2)设置外循环迭代次数;)设置外循环迭代次数;(3)算法搜索到的最优值连续若干步保持不变;)算法搜索到的最优值连续若干步保持不变;(4)概率分析方法。)概率分析方法。3.3.6 3.3.6 外循环终止准则外循环终止准则外循环终止准则外循环终止准则你现在浏览的是第二十九页,共51页3.4 模拟退火算法的改进模拟退火算法的改进现代优化计算现代优化计算w模拟退火算法的优点模拟退火算法的优点 质量高;质量高;初值鲁棒性强;初值鲁棒性强;简单、通用、易实现。简单、通用、易实现。w模拟退火算法的缺点模拟退火算法的缺点 由于要求较高的初始温度、较慢的降温速率、较低的终由于要求较高的初始温度、较慢的降温速率、较低的终止温度,以及各温度下足够多次的抽样,因此优化过程止温度,以及各温度下足够多次的抽样,因此优化过程较长。较长。3.4.1 模拟退火算法的优缺点模拟退火算法的优缺点你现在浏览的是第三十页,共51页3.4 模拟退火算法的改进模拟退火算法的改进现代优化计算现代优化计算w改进的可行方案改进的可行方案 (1)设计合适的状态产生函数;)设计合适的状态产生函数;(2)设计高效的退火历程;)设计高效的退火历程;(3)避免状态的迂回搜索;)避免状态的迂回搜索;(4)采用并行搜索结构;)采用并行搜索结构;(5)避免陷入局部极小,改进对温度的控制方式;)避免陷入局部极小,改进对温度的控制方式;(6)选择合适的初始状态;)选择合适的初始状态;(7)设计合适的算法终止准则。)设计合适的算法终止准则。3.4.2 3.4.2 改进内容改进内容改进内容改进内容你现在浏览的是第三十一页,共51页3.4 模拟退火算法的改进模拟退火算法的改进现代优化计算现代优化计算w改进的方式改进的方式 (1)增加升温或重升温过程,避免陷入局部极小;)增加升温或重升温过程,避免陷入局部极小;(2)增加记忆功能(记忆)增加记忆功能(记忆“Best so far”状态);状态);(3)增加补充搜索过程(以最优结果为初始解);)增加补充搜索过程(以最优结果为初始解);(4)对每一当前状态,采用多次搜索策略,以概率)对每一当前状态,采用多次搜索策略,以概率接受区域内的最优状态;接受区域内的最优状态;(5)结合其它搜索机制的算法;)结合其它搜索机制的算法;(6)上述各方法的综合。)上述各方法的综合。3.4.2 改进内容改进内容你现在浏览的是第三十二页,共51页3.4 模拟退火算法的改进模拟退火算法的改进现代优化计算现代优化计算w改进的思路改进的思路 (1)记录)记录“Best so far”状态,并即时更新;状态,并即时更新;(2)设置双阈值,使得在尽量保持最优性的前提下)设置双阈值,使得在尽量保持最优性的前提下减少计算量,即在各温度下当前状态连续减少计算量,即在各温度下当前状态连续 m1 步保持步保持不变则认为不变则认为Metropolis抽样稳定,若连续抽样稳定,若连续 m2 次退温过次退温过程中所得最优解不变则认为算法收敛。程中所得最优解不变则认为算法收敛。3.4.3 一种改进的模拟退火算法一种改进的模拟退火算法你现在浏览的是第三十三页,共51页3.4 模拟退火算法的改进模拟退火算法的改进现代优化计算现代优化计算w改进的退火过程改进的退火过程 (1)给定初温)给定初温t0,随机产生初始状态,随机产生初始状态s,令初始最优解,令初始最优解s*=s,当前,当前状态为状态为s(0)=s,i=p=0;(2)令)令t=ti,以,以t,s*和和s(i)调用改进的抽样过程,返回其所得最调用改进的抽样过程,返回其所得最优解优解s*和当前状态和当前状态s(k),令当前状态,令当前状态s(i)=s(k);(3)判断)判断C(s*)m2?若是,则转第若是,则转第(6)步;否则,返回第步;否则,返回第(2)步;步;(6)以最优解)以最优解s*作为最终解输出,停止算法。作为最终解输出,停止算法。3.4.3 一种改进的模拟退火算法一种改进的模拟退火算法你现在浏览的是第三十四页,共51页3.4 模拟退火算法的改进模拟退火算法的改进现代优化计算现代优化计算w改进的抽样过程改进的抽样过程 (1)令)令k=0时的初始当前状态为时的初始当前状态为s(0)=s(i),q=0;(2)由状态)由状态s通过状态产生函数产生新状态通过状态产生函数产生新状态s,计算增量,计算增量C=C(s)-C(s);(3)若)若CC(s)?若若是,则令是,则令s*=s,q=0;否则,令;否则,令q=q+1。若。若C0,则以概率,则以概率exp(-C/t)接受接受s作为下一当前状态;作为下一当前状态;(4)令)令k=k+1,判断,判断qm1?若是,则转第若是,则转第(5)步;否则,返回第步;否则,返回第(2)步;步;(5)将当前最优解)将当前最优解s*和当前状态和当前状态s(k)返回改进退火过程。返回改进退火过程。3.4.3 一种改进的模拟退火算法一种改进的模拟退火算法你现在浏览的是第三十五页,共51页3.5 模拟退火算法的实现与应用模拟退火算法的实现与应用现代优化计算现代优化计算 3.5.1 30城市城市TSP问题(问题(d*=423.741 by D B Fogel)wTSP Benchmark 问题问题 41 94;37 84;54 67;25 62;7 64;2 99;68 58;71 44;54 62;83 69;64 60;18 54;22 60;83 46;91 38;25 38;24 42;58 69;71 71;74 78;87 76;18 40;13 40;82 7;62 32;58 35;45 21;41 26;44 35;4 50你现在浏览的是第三十六页,共51页3.5 模拟退火算法的实现与应用模拟退火算法的实现与应用现代优化计算现代优化计算w算法流程算法流程 3.5.1 30城市城市TSP问题(问题(d d*=423.741 by D B Fogel)你现在浏览的是第三十七页,共51页3.5 模拟退火算法的实现与应用模拟退火算法的实现与应用现代优化计算现代优化计算w初始温度的计算初始温度的计算 for i=1:100 route=randperm(CityNum);fval0(i)=CalDist(dislist,route);end t0=-(max(fval0)-min(fval0)/log(0.9);3.5.1 303.5.1 30城市城市城市城市TSPTSP问题(问题(问题(问题(d d*=423.741 by D B Fogel)你现在浏览的是第三十八页,共51页3.5 模拟退火算法的实现与应用模拟退火算法的实现与应用现代优化计算现代优化计算w状态产生函数的设计状态产生函数的设计 (1)互换操作,随机交换两个城市的顺序;)互换操作,随机交换两个城市的顺序;(2)逆序操作,两个随机位置间的城市逆序;)逆序操作,两个随机位置间的城市逆序;(3)插入操作,随机选择某点插入某随机位置。)插入操作,随机选择某点插入某随机位置。3.5.1 30城市城市TSP问题(问题(d*=423.741 by D B Fogel)283591467283591467283591467281593467283419567235981467你现在浏览的是第三十九页,共51页3.5 模拟退火算法的实现与应用模拟退火算法的实现与应用现代优化计算现代优化计算w参数设定参数设定 截止温度截止温度 tf=0.01;退温系数退温系数 alpha=0.90;内循环次数内循环次数 L=200*CityNum;3.5.1 30城市城市TSP问题(问题(d d*=423.741 by D B Fogel)你现在浏览的是第四十页,共51页3.5 模拟退火算法的实现与应用模拟退火算法的实现与应用现代优化计算现代优化计算w运行过程运行过程 3.5.1 303.5.1 30城市城市城市城市TSPTSP问题(问题(问题(问题(d d*=423.741 by D B Fogel)你现在浏览的是第四十一页,共51页3.5 模拟退火算法的实现与应用模拟退火算法的实现与应用现代优化计算现代优化计算w运行过程运行过程 3.5.1 303.5.1 30城市城市城市城市TSPTSP问题(问题(问题(问题(d*=423.741 by D B Fogel)你现在浏览的是第四十二页,共51页3.5 模拟退火算法的实现与应用模拟退火算法的实现与应用现代优化计算现代优化计算w运行过程运行过程 3.5.1 30城市城市TSP问题(问题(d*=423.741 by D B Fogel)你现在浏览的是第四十三页,共51页3.5 模拟退火算法的实现与应用模拟退火算法的实现与应用现代优化计算现代优化计算w运行过程运行过程 3.5.1 30城市城市TSP问题(问题(d*=423.741 by D B Fogel=423.741 by D B Fogel)你现在浏览的是第四十四页,共51页3.5 模拟退火算法的实现与应用模拟退火算法的实现与应用现代优化计算现代优化计算w运行过程运行过程 3.5.1 30城市城市TSP问题(问题(d*=423.741 by D B Fogel)你现在浏览的是第四十五页,共51页3.5 模拟退火算法的实现与应用模拟退火算法的实现与应用现代优化计算现代优化计算w运行结果运行结果 3.5.1 30城市城市TSP问题(问题(d*=423.741 by D B Fogel)你现在浏览的是第四十六页,共51页3.5 模拟退火算法的实现与应用模拟退火算法的实现与应用现代优化计算现代优化计算w换热器模型换热器模型 两级管壳式换热器组成的换热器系统,数学模型高度两级管壳式换热器组成的换热器系统,数学模型高度非线性,其目标函数通常是多峰非线性,其目标函数通常是多峰(谷谷)的,具有很多局的,具有很多局部最优解。部最优解。3.5.2 模拟退火算法在管壳式换热器优化设计中的应用模拟退火算法在管壳式换热器优化设计中的应用你现在浏览的是第四十七页,共51页3.5 模拟退火算法的实现与应用模拟退火算法的实现与应用现代优化计算现代优化计算w优化目标优化目标 以换热器系统的总费用年值最小作为优化设计的目标。以换热器系统的总费用年值最小作为优化设计的目标。其中,其中,f1(X)是两级换热器的初始投资,是两级换热器的初始投资,f2(X)是两级是两级换热器年维护费换热器年维护费(包括除垢、保养、维修等包括除垢、保养、维修等),f3(X)是冷是冷却水资源费以及管程压降能耗费,却水资源费以及管程压降能耗费,f4(X)是壳程压降能是壳程压降能耗费。耗费。3.5.2 模拟退火算法在管壳式换热器优化设计中的应用模拟退火算法在管壳式换热器优化设计中的应用你现在浏览的是第四十八页,共51页3.5 模拟退火算法的实现与应用模拟退火算法的实现与应用现代优化计算现代优化计算w优化目标优化目标 经过分析,优化问题的独立变量共经过分析,优化问题的独立变量共12个,分别是一级换热个,分别是一级换热器煤油出口温度器煤油出口温度t2、冷却水流量、冷却水流量G1、两个换热器的管内、两个换热器的管内径径d1,d2和管间距和管间距S1,S2、折流板间距、折流板间距B1,B2、折流板、折流板开口角开口角1,2、单管长度、单管长度L1,L2。3.5.2 模拟退火算法在管壳式换热器优化设计中的应用模拟退火算法在管壳式换热器优化设计中的应用你现在浏览的是第四十九页,共51页3.5 模拟退火算法的实现与应用模拟退火算法的实现与应用现代优化计算现代优化计算w应用模拟退火算法解决优化设计应用模拟退火算法解决优化设计 状态表示状态表示12个变量的实数表示;个变量的实数表示;初始温度初始温度100;结束温度结束温度0.001;状态产生函数状态产生函数 ,为扰动幅度参数,为扰动幅度参数,为随机扰动变量,随机扰动可服从柯西、高斯、均匀分为随机扰动变量,随机扰动可服从柯西、高斯、均匀分布。布。降温因子降温因子0.98;马氏链长度马氏链长度1200。3.5.2 3.5.2 模拟退火算法在管壳式换热器优化设计中的应用模拟退火算法在管壳式换热器优化设计中的应用模拟退火算法在管壳式换热器优化设计中的应用模拟退火算法在管壳式换热器优化设计中的应用你现在浏览的是第五十页,共51页3.5 模拟退火算法的实现与应用模拟退火算法的实现与应用现代优化计算现代优化计算w优化结果优化结果 优化目标值优化目标值0.25565E06 独立变量取值独立变量取值 3.5.2 3.5.2 模拟退火算法在管壳式换热器优化设计中的应用模拟退火算法在管壳式换热器优化设计中的应用模拟退火算法在管壳式换热器优化设计中的应用模拟退火算法在管壳式换热器优化设计中的应用t2G1Kg/sd1mmS1mmB1m1弧度64.419415.9716615.5716334.097160.924361.93421L1md2mmS2mmB2m2弧度L2m5.9423416.7793527.740120.729532.199285.78314你现在浏览的是第五十一页,共51页

    注意事项

    本文(模拟退火算法详解优秀PPT.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开