欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2020-2021学年高中数学-第二章-空间向量与立体几何-5-夹角的计算课时跟踪训练(含解析)北师.doc

    • 资源ID:65738771       资源大小:412.04KB        全文页数:11页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2020-2021学年高中数学-第二章-空间向量与立体几何-5-夹角的计算课时跟踪训练(含解析)北师.doc

    第二章 空间向量与立体几何A组基础巩固1如图所示,在三棱柱ABCA1B1C1中,AA1底面ABC,ABBCAA1,ABC90°,点E,F分别是棱AB,BB1的中点,则直线EF和BC1的夹角是()A.B.C. D.解析:如图所示,建立空间直角坐标系Bxyz.由于ABBCAA1,不妨取AB2,则B(0,0,0),E(0,1,0),F(0,0,1),C1(2,0,2)(0,1,1),(2,0,2),cos,异面直线EF和BC1的夹角为,故选C.答案:C2若平面的一个法向量为n(4,1,1),直线l的方向向量为a(2,3,3),则直线l与平面夹角的余弦值为()A B.C D.解析:cosa,n,直线l与平面夹角的正弦值为,余弦值为.答案:D3若两个平面的法向量分别为(5,12,0)和(0,5,12),则这两个平面的二面角的余弦值为()A B.C± D±解析:由及两个平面的二面角的范围为0,可知这两个平面的二面角的余弦值为±.答案:D4如图,在空间直角坐标系中有直三棱柱ABCA1B1C1,CACC12CB,则直线BC1与直线AB1夹角的余弦值为()A. B.C. D.解析:设CA2,则C(0,0,0),A(2,0,0),B(0,0,1),C1(0,2,0),B1(0,2,1),可得向量(2,2,1),(0,2,1),由向量的夹角公式得cos,.答案:A5如图所示,已知四棱锥PABCD中,底面ABCD是菱形,且PA平面ABCD,PAADAC,点F为PC的中点,则二面角CBFD的正切值为 ()A. B.C. D.解析:如图所示,设AC与BD交于点O,连接OF.以O为坐标原点,OB,OC,OF所在直线分别为x,y,z轴建立空间直角坐标系Oxyz.设PAADAC1,则BD,所以O(0,0,0),B,F,C,易知为平面BDF的一个法向量,由,设平面BCF的法向量为n(x,y,z),则,即,令x1,则y,z,所以平面BCF的一个法向量为n(1,)所以cosn,sinn,所以tann,.故二面角CBFD的正切值为.答案:D6在正方体ABCD­A1B1C1D1中,E,F分别为AB,CC1的中点,则异面直线EF与A1C1所成角的大小是_解析:以A为坐标原点,以AB,AD,AA1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,设B(2,0,0),则E(1,0,0),F(2,2,1),C1(2,2,2),A1(0,0,2)所以(1,2,1),(2,2,0)cos,所以,30°,即异面直线EF与A1C1所成的角为30°.答案:30°7若直线l的方向向量a(2,3,1),平面的一个法向量n(4,0,1),则直线l与平面所成角的正弦值为_解析:由题意,得直线l与平面所成角的正弦值为sin .答案:8.已知四棱锥PABCD的底面ABCD是边长为2的正方形,PAPD,平面ABCD平面PAD,M是PC的中点,O是AD的中点,则直线BM与平面PCO所成角的正弦值为_解析:取BC的中点E,连接OE,以O为坐标原点,射线OA,OE,OP分别为x,y,z轴的正半轴,建立空间直角坐标系(图略),则O(0,0,0),B(1,2,0),C(1,2,0),P(0,0,2),M.因此,(0,0,2),(1,2,0)设平面PCO的法向量为n(x,y,z),则,即,取n(2,1,0),因此直线BM与平面PCO所成角的正弦值为|cos,n|.答案:9.如图,在棱长为1的正方体ABCDA1B1C1D1中,M、N分别为A1B1和BB1的中点,求直线AM与CN所成角的余弦值解析:解法一,·()·()·,而| .同理,|,设直线AM与CN所成的角为,则cos .即AM与CN所成角的余弦值为.解法二如图,建立空间直角坐标系,把D点视作原点O,分别沿、方向为x轴、y轴、z轴的正方向则A(1,0,0),M(1,1),C(0,1,0),N(1,1,),(1,1)(1,0,0)(0,1),(1,1,)(0,1,0)(1,0,)故·0×1×01×,| ,| .cos .即AM与CN所成角的余弦值为.10.如图,在四棱锥PABCD中,PA底面ABCD,ADAB,ABDC,ADDCAP2,AB1,点E为棱PC的中点(1)求证:BEDC;(2)若F为棱PC上一点,满足BFAC,求二面角FABP的余弦值解析:(1)证明:依题意,以点A为坐标原点建立空间直角坐标系(如图),可得A(0,0,0),B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2)由E为棱PC的中点,得E(1,1,1),所以(0,1,1),(2,0,0),故·0,所以BEDC.(2)(1,2,0),(2,2,2),(2,2,0),(1,0,0)由点F在棱PC上,设 (0<<1),故 (12,22,2)由BFAC,得·0,因此2(12)2(22)0,解得,即.设n1(x,y,z)为平面FAB的法向量,则,即.不妨令z1,可得n1(0,3,1)为平面FAB的一个法向量取平面ABP的法向量n2(0,1,0),则cosn1,n2.易知二面角FABP是锐角,所以其余弦值为.B组能力提升1如图所示,点P是ABC所在平面外的一点,若PA,PB,PC与平面的夹角均相等,则点P在平面上的投影P是ABC的()A内心 B外心C重心 D垂心解析:由于PA,PB,PC与平面的夹角均相等,所以这三条由点P出发的平面ABC的斜线段相等,故它们在平面ABC内的投影PA,PB,PC也都相等,故点P是ABC的外心答案:B2.如图,已知矩形ABCD与矩形ABEF全等,二面角DABE为直二面角,M为AB的中点,FM与BD所成的角为,且cos ,则()A1 B.C. D.解析:不妨设BC1,AB,则.记a,b,c,则ba,cb,根据题意,|a|c|1,|b|,a·bb·cc·a0,·b22,而|,|,|cos,|,得.故选C.答案:C3.如图,平面PAD平面ABCD,四边形ABCD为正方形,PAD90°,且PAAD,E,F分别是线段PA,CD的中点,若异面直线EF与BD所成的角为,则cos _.解析:设正方形ABCD的边长为2,以A为坐标原点,以AB,AD,AP所在直线分别为x,y,z轴建立如图所示的空间直角坐标系,则B(2,0,0),D(0,2,0),E(0,0,1),F(1,2,0),则(2,2,0),(1,2,1),所以cos .答案:4如图所示,已知正三棱柱ABC­A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC夹角的正弦值为_解析:不妨设正三棱柱ABC­A1B1C1的棱长为2,建立如图所示的空间直角坐标系,则C(0,0,0),A(,1,0),B1(,1,2),D,则,(,1,2),设平面B1DC的法向量为n(x,y,1),由解得n(,1,1)又,sin |cos,n|.答案:5.如图,在几何体ABCDE中,四边形ABCD是矩形,AB平面BEC,BEEC,ABBEEC2,点G,F分别是线段BE,DC的中点(1)求证:GF平面ADE.(2)求平面AEF与平面BEC所成锐二面角的余弦值(3)在线段CD上是否存在一点M,使得DEAM?若存在,求出DM的长;若不存在,请说明理由解析:(1)证明:如图,取AE的中点H,连接HG,HD.又G是BE的中点,所以GHAB,且GHAB.又F是CD的中点,所以DFCD,由四边形ABCD是矩形,得ABCD,ABCD,所以GHDF,GHDF,从而四边形HGFD是平行四边形,得GFDH.又DH平面ADE,GF平面ADE,所以GF平面ADE.(2)如图,在平面BEC内,过点B作BQEC,因为BEEC,所以BQBE.又AB平面BEC,所以ABBE,ABBQ.以B为坐标原点,分别以,的方向为x轴、y轴、z轴的正方向建立空间直角坐标系Bxyz,则A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1)因为AB平面BEC,所以(0,0,2)为平面BEC的一个法向量,设n(x,y,z)为平面AEF的法向量,又(2,0,2),(2,2,1),由,得,取z2,得n(2,1,2),从而cosn,所以平面AEF与平面BEC所成锐二面角的余弦值为.(3)假设在线段CD上存在点M,设点M的坐标为(2,2,a)(0a2)因为A(0,0,2),E(2,0,0),D(2,2,2),所以(0,2,2),(2,2,a2),因为DEAM,所以·0,所以42(a2)0,得a0,所以DM2.

    注意事项

    本文(2020-2021学年高中数学-第二章-空间向量与立体几何-5-夹角的计算课时跟踪训练(含解析)北师.doc)为本站会员(热心****k)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开