欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    协整分析计量经济学EVIEWS建模课件.ppt

    • 资源ID:65750580       资源大小:226.99KB        全文页数:38页
    • 资源格式: PPT        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    协整分析计量经济学EVIEWS建模课件.ppt

    利用回归方法进行建模时,各回归元都是经济变量,它们多数都是非平稳的时序过程。这与经典假设中各回归元都是平稳的前提条件相矛盾。所以在非平稳时序建模时,一定要进行协整分析,即在避免产生伪回归现象的同时,寻找非平稳现象间的长期均衡。一、伪回归与协整回归二、协整回归方程的建立与检验三、长期均衡与误差修正模型非平稳时序的长期均衡分析一、伪回归与协整回归 伪回归的含义及后果伪回归的含义在回归模型中有一个重要的基本假设,就各变量都是平稳的,而在非平稳的时序间建立回归模型,很可能将本来与被解释变量没有因果关系的现象纳入到回归方程的解释变量中,且通过t检验认为是显著的,这种情况就是伪回归。它是由格兰杰Granger和纽博尔德Newbold在1974年提出的,对其理论解释与完善是由菲利浦斯Phillips在1986年完成的。Granger和Newbold所做的实验是将回归方程:Yt01Xtt的数据由随机游走系统生成如下:Xt=Xt-1+ut,X0=0,ut IN(0,1)Yt=Yt-1+vt,Y0=0,vt IN(0,1)其中:E(ui vj)=0,i,j表示ui和vj服从相互独立的标准正态分布,由此可知Xt和Yt为相互独立的I(1)变量。我们知道基于两个独立的随机游走变量建立的回归方程,应该是毫无意义的,即它们所体现的任何关系都具有欺骗性。更令人惊奇的是在5%的显著性水平上,有近 75%的可能性会拒绝1=0的原假设。且回归的R2值通常很大,其残差也呈现出高度的自相关性。这一点可以通过如下试验来证实:利用计算机反复生成样本容量为T=100的两个时序X和Y各10000次,并对每次生成的序列相应作如下一元线性回归:Yt=b0+b1Xt+et 计算t(b1)的值,进而可以得到1万个t(b1)值的分布见下图,同时给出了自由度为98的t分布曲线。三条试验分布曲线叠加示意图t(98)分布和虚假回归条件下的t分布图通过上图中的两条曲线可以看出t(b1)分布的方差远远大于正常t分布的方差。当时间序列非平稳时,若仍然使用t检验,则拒绝1=0的概率大大增加。此外上述条件下,随着样本容量T,t(b1)的分布将是发散的,所以拒绝1=0的概率将会越来越大,从而将不相关的现象视为因果关系而建立了回归模型,即造成了虚假回归问题。伪回归的后果伪回归的后果在违背古典回归分析的平稳前提时,如果仍然使用最小二乘回归方法建立模型,则易产生伪回归现象,其后果如下:回归的残差e将不平稳,回归没有任何意义;由于残差序列含有随机趋势,使任何残差都不会衰减,以至于模型中的离差是永久的,而具有永久性离差的经济模型是不妥当的,不能进行预测等任何用处。当残差序列非平稳时,由于方差会变得无穷大,使自相关系数趋近于1。所以,任何 t检验、F检验和R2等统计检验都是不可信的。Phillips在1986年证明了,即使在大样本的情况下,由于Y是I(1)过程,而残差e也是I(1)过程,即误差具有单位根,若采用OLS法仍然可以得到 10 的错误结论。协整与长期均衡 协协整整【协整(co-integration)的定义】假定(n1)阶向量Y的每个分量序列都是d阶单整过程,即YiI(d)。如果存在(n1)阶向量,使得线性组合序列YI(d-b),则我们称Yi的各分量之间是d、b阶协整的,并简记为YCI(d,b);其中向量就叫协整向量,中的元素叫做协整参数。在现实的经济变量中协整关系表明,变量间存在着长期的平衡关系,这是EngleGranger(1987)提出的,对协整理解的概念。协整举例:协整举例:若Xt I(d),Yt I(c),则有:Zt=(a Xt+bYt)I(maxd,c)因为:Zt=(aXt+bYt)=(aXt+bYt)-(aXt-1+bYt-1)=(aXt+bYt)所以当 c d 时,Zt只有差分c次才能平稳。一般来说,若Xt I(c),Yt I(c),则:Zt=(aXt+bYt)I(c)而当Zt的单整阶数小于c的情形时,往往是Xt与Yt之间存在协整关系。均衡指现象在其内在机制作用下达到的相对稳定的一种平稳状态,即当系统受到干扰后会偏离均衡点,而内在均衡机制将努力使系统重新回到均衡状态,如市场中看不见的手作用下的价格机制等。协整关系是对非平稳经济变量长期均衡关系的统计描述。即现象间的内在均衡机制的存在状态:如果经济变量X和Y之间永远处于均衡状态,则对该均衡的描绘误差将永远为零;如果因某因素的干扰使系统偏离了均衡点,则会表现为误差非零;而平均来说系统将在下一时期开始逐渐移回到均衡状态。均衡均衡 我们将非随机性的干扰产生的作用看作是均衡的结果,而将随机性干扰产生的偏差叫做非均衡误差,其作用是逐期衰减的。这同时也说明一个具有均衡机制的系统中,均衡机制能够始终维持系统不断的排除非均衡误差的干扰,使经济系统保持相对均衡的状态。而具有这种机制的经济系统我们可以称之为经济的协整系统。协整系统协整回归古典回归分析的前提条件是各回归元是平稳的,而非平稳的各回归元,只有在协整系统中才是有效的。对协整回归的观察可以分为如下两个情况:各回归元是同阶单整时,例如:Y,XCI(1,1),即XI(1),YI(1)。则在一元线性回归关系中,协整向量为:=(1,-b);这时只有e=Y-bXI(0),才能说明该回归模型是有效的,如果残差e不平稳,则回归没意义。协整系统与回归的关系 如果多个变量间的单整阶数不等,则回归关系的成立需要有分阶协整关系的存在。如在两个解释变量的回归模型YbX中;X1I(2),X2I(2),YI(1);要想使回归有效,就必须使:u=Y,XI(0)成立,而其成立的条件就是X的协整阶数为1,即:X=X1,X2CI(2,1)这说明Xb1X1+b2X2I(1);同时还要有:Y,XCI(1,1)成立,即uY-b1X1-b2X2I(0)。这时的协整向量为:=(1,-b1,-b2)协整回整回归的特性的特性对非平稳变量进行回归,如果协整关系存在,则该回归方程为协整回归方程,它将具备如下特征:第一,残差系列的平稳性,是最基本的特征要求;第二,残差系列符合基本假设仍然是必备的条件;第三,Stock(1987)年证明了:如果该长期均衡存在,即存在协整回归时,则协整系数bi将是超一致的估计量,即协整回归的OLS 估计量要比一般平稳变量OLS估计量收敛得更快。对非平稳时序进行回归时,如果协整关系不存在,则其结果就是伪回归,它多出现在如下几类情况下:第一,各回归元非平稳,且其各自的单整阶数不等的时候;第二,回归的残差时序中,仍然包含着明显的随机性趋势的时候;第三,当各回归元中有的变量存在确定趋势,而有的变量同时存在随机性趋势的时候。伪回回归及其可能的情况及其可能的情况二、协整回归方程的建立与检验对经济系统是否存在协整关系的判断就是协整检验,其检验方法大致上可以分为如下两类:一类是基于回归系数进行的检验,将在多方程模型中介绍和使用;另一类是通过回归方程的建立过程,结合对其残差平稳性的检验所进行的一系列检验方法。这是单方程协整性检验的规范内容,具体分为如下三个主要环节。在进行变量间协整性检验时,首先要使用DF、ADF、PP等方法对经济变量的单整阶数做初步判断,并注意如下几个方面的情况:一元回归对变量单整阶数的要求在双变量的回归模型中,由于只含有一个解释变量和一个被解释变量,则其间的单整阶数应该相同。例如Y与X都是I(d)的时候,才有可能CI(d,d)存在;对经济变量间均衡可能性的判断对经济变量间均衡可能性的判断 一元回归对变量单整阶数的要求多元回归模型对变量单整阶数的要求在多元回归模型中,各变量的的单整阶数可以是不同的。但是是符合的基本要求有如下几点:被解释变量的单整阶数不能高于任意一个解释变量的单整阶数;解释变量的单整阶数高于被解释变量时,最高阶的解释变量个数必须有两个及以上;变量间存在着多重协整的可能。即当YI(N),XiI(K),XjI(K)时,只要KN,X=(XiXj)CI(K,K-N);则协整回归可能为:Y=f(X)CI(N,N)。多元回归模型对变量单整阶数的要求格兰杰对因果关系的判断格兰杰因果关系检验(Granger test of causality)的基本方法是利用变量X和Y建立如下两个方程:Yt=0+iYt-i+jXt-jXt=0+kXt-k+lYt-l对上述两个方程各参数的整体显著性进行结束与无约束的F检验,可以得到如下四个方面的结论:X对Y有单向影响:表现为Y方程中的X各滞后项的参数整体不为零,而X方程中的Y各滞后项的参数整体为零;对长期均衡的估计格兰杰对因果关系的判断 Y对X有单向影响:表现为X方程中的Y各滞后项的参数整体不为零,而Y方程中的X各滞后项的参数整体为零;Y与X间存在双向影响:表现为Y和X的各滞后项的参数都整体不为零;Y与X间不存在影响:表现为Y和X的各滞后项的参数都整体为零。这里的检验对滞后期长度很敏感,所有要对不同的滞后期进行选择,以残差无自相关为准。对长期均衡方程的估期均衡方程的估计在对各变量的单整阶数进行判断的基础上,再通过因果关系的初步分析,求得可能存在协整关系的变量,并就变量间的回归模型进行OLS估计。在回归估计的基础上,可以求得非均衡误差i的估计值和协整参数的估计值,即残差ei和各参数估计值 b0,b1,bk等,以用于进一步的协整检验。对残差项进行平稳性检验对残差项进行平稳性检验因经济时序数列只有存在协整关系时,才能使非均衡误差平稳,所以为了确定变量间是否真正存在协整关系,还要通过对非均衡误差的平稳性检验,来进一步确认经济变量间是否存在协整的关系。初步的经验判断初步的经验判断对非均衡误差(即模型的残差)进行平稳性检验时,可以采用DW、DF、ADF、PP等很多方法进行检验。经验判断。即在估计回归方程后,如果存在较低的DW统计量与较高的R2,则可能存在伪回归。DW检验方法。这是对残差是否为随机游走的判断,即H0:DW=0;若e为随机游走,则DW接近于0,反之存在协整关系。Sargan和Bhargana最早编制了用于检验协整的DW显著性水平临界值表,如相对于1%、5%、10%各显著性水平的DW临界值分别为:0.511、0.386、0.322。如果DW值大于临界值时否定原假设,认为回归是协整的。Engle 和 Granger 在1987年提出的EG检验,是协整检验的最常规方法,其检验的基本模型有如下两类:一是EG检验的模型:即利用如下回归方程式:et=et-1+t 或 D(et)=et-1+t二是增广的EG检验模型,即AEG检验式为:D(et)=et-1+ki=1iD(et-i)+t因为在原回归模型中一般都加载了截距项和趋势项,所以在残差et 序列的检验模型中就没有必要再加载截距项和趋势项了。具体的检验步骤如下:精确的精确的EG和和AEG检验法法H0:=-1=0,即残差模型是随机游走的非平稳过程。如果我们不能拒绝原假设,则说明存在单位根,由此认为被解释变量Y与解释变量Z阵不是协整关系。如果能够拒绝原假设,则意味着残差是平稳的,若 Y 和 Z 都是 I(d)的,则 Y 与 Z 是 CI(d.d)。检验时的原假的原假设由于OLS估计是使残差平方和最小,协整回归OLS估计所产生的残差序列很容易是平稳序列。由于协整时的估计量是超一致的,所以残差的方差也可能极小,这将导致残差序列的平稳,进而使检验中拒绝原假设的比率比实际情况要大。因此以残差et为基础的EG或AEG检验的临界值条件要比DF或ADF检验的临界值条件更加苛刻(即更负一些),才能敏感的拒绝零假设,反映出在非长期均衡的回归过程中,被破坏了的真实的误差属性。检验统计量的分布及其量的分布及其临界界值可见协整性检验所依据的分布不应该是正态分布或t分布,也不能是DF分布,即对其检验时所用的临界值是不能借助 t 或DF的。为此,两位学者利用蒙特卡罗模拟,其结果显示协整检验的临界值与协整回归式中的非平稳变量的个数有关,即随着单整变量个数的增多,临界值将更向左移动。具体成果是:Engle和Granger给出了两个变量,样本容量为100的EG和AEG检验的临界值表;Engle和姚(Engle&yoo,1987)给出了25个变量,不同样本容量的EG和AEG临界值表;麦金农(Mackinnon,1991)将协整与单整检验结合起来,即把 ADF 和 AEG 结合起来,给出了响应面函数的临界值表,见附表所示。根据临界值表可计算协整检验的临界值,其计算公式为:C 1T-1 2T-2其中:表示检验水平,T为样本容量,表中的N为协整回归式中的变量个数,即当N=1时AEG检验将是ADF 单整检验,当N1时是AEG协整检验;其他各项内容都在Mackinnon提供的临界值表中(见附页)。协整关系的判断整关系的判断首先,在残差序列非平稳假设前提下,计算其检验统计量EG,其计算方法与t或DF统计量相同;然后,根据麦金农(Mackinnon)的临界值计算方法求得检验临界值C;最后,判断如下:当EG C 时,不能否定原假设,认为是伪回归;当EG C 时,否定原假设,认为模型的变量间存在协整关系。协整向量的多样性在双变量的协整关系分析中,如果协整关系存在,则其变量必是同阶单整的,且协整关系的唯一的;在多变量的协整关系分析中,如果协整关系存在,则可能不止一个。例如:在X、Y、Z、W四个变量之间有如下协整关系:u=X-0-1Z I(0);v=Y-0-1W I(0)则u与v的线性综合u+v=也将是一种协整关系。即:=X-0-1Z+Y-0-1W I(0)由此可知,下式也将是协整关系式:=Y-0-1X-2Z-3W I(0)三、误差修正模型ECM误差修正一词最早由Sargen(1964)提出的,但是误差修正模型是1978年由大卫德森Davidson、亨格瑞Hendry、斯巴Srba和耶Yeo四人提出的,因此又简称为DHSY模型。设协整变量Y与X之间的长期均衡关系为Ytf(Xt),它常表现为静态的均衡关系。但是由于非均衡的干扰的作用,往往使这种关系产生非均衡的偏差,而长期的均衡机制又会在动态上对此偏差进行修正。将该修正过程以模型的形式反映就是误差修正模型(Error correction model)。建模前提在现实的回归分析过程中,多数非平稳变量的线性组合都不是协整的,只有少数情况下才存在协整关系。根据格兰杰定理(1987),具有协整关系的单整变量之间一定可以建立起误差修正模型ECM。一般情况下:如果单整变量间不是协整的,则经差分变换后其经济意义合理,可以建立差分后的经典回归模型。如果单整变量间是协整的,则用差分转换就不恰当了,往往违反经济理论和静态均衡等事实,这时要建立误差修正模型。建立误差修正模型的主要方法有两种:EG两步法;及从一般到特殊的建模方法。EG两步法EG两步法是在EG或AEG协整检验的基础上,分为如下两步进行误差修正模型ECM的建立:第一步,进行协整回归,估计长期均衡关系:Yf=BX并获得其残差序列为:et=Yt-Yft=Y-BX 建立误差修正模型的方法EG两步法第二步,估计误差修正模型。直接利用协整变量长期均衡的残差来估计误差修正模型。基本形式为:Yt =Xt+(Yt-1-BXt-1)+vt可运用OLS估计参数、,检验过程中要注意:ECt-1=Yt-1-BXt-1为误差修正项,属于最大滞后期;若vt出现自相关,可以通过增加Y、X的滞后期来消除;若增加了Y、X的滞后项,则要同时调整模型中误差修正项的滞后期,如:Yt =1 Xt+Yt-1+(Yt-2-BXt-2)+vt从一般到特殊的建模方法这是亨德里(Hendry)提出的,基于最一般线性自回归分布滞后ADL(autoregressive distributed lag)的动态模型,以尽量多的解释变量加入模型,并在逐步剔除不显著的解释变量的基础上,对模型进行精练的过程。ADL的一般形式如下:Y=(L)Y+(L)X+用滞后算子变换成静态关系为:Y=1-(L)-1(L)X+1-(L)-1对上式静态模型取期望值可得静态长期均衡关系:E(Yt|Xt)=XB=f(Xt)则长期非均衡误差为:ECt-1=Yt-f(Xt)对原ADL模型取一阶差分,可得误差修正模型基本形式:Yt=0+i Yt-i+j Xt-j+ECt-j+vt该模型中各项和对应的要素都需经过检验,对应的EC最为主要,是速度调整系数。对模型残差进行白噪声检验,可评估模型的适用性。如果残差系列有自相关,则说明滞后长度可能太短,需要重新建立滞后期较长的ECM模型。对速度调整系数的分析速度调整系数反映了在当期被解释变量的变动中,由均衡机制的作用使被解释变量在上期的非均衡偏差基础上调整了倍的修正量。其作用机理表明:如果越大,则均衡机制作用越大,校正非均衡偏差的能力就越强。当=0时,不存在误差修正模型,此时称解释变量是弱外生性的。误差修正模型可以消弱原模型中的多重共线性及自相关性。误差修正模型的分析如果非平稳的X、Y存在协整关系时,ECM模型中的各个差分变量及非均衡误差都将是平稳的。可以将误差修正项中的括号打开,直接对模型进行OLS估计,然后再变换为ECM模型的形式。在模型的精练过程中,对于t检验不显著的差分变量可以剔除,但是不能剔除非均衡误差项中的任何滞后变量,否则会影响变量间的长期均衡关系。注意事项

    注意事项

    本文(协整分析计量经济学EVIEWS建模课件.ppt)为本站会员(wuy****n92)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开