欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    非平衡态热力学优秀PPT.ppt

    • 资源ID:65766602       资源大小:1.44MB        全文页数:23页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    非平衡态热力学优秀PPT.ppt

    非平衡态热力学第一页,本课件共有23页目目 录录 5.1 热力学从平衡态向非平衡态的发展热力学从平衡态向非平衡态的发展 5.2 局域平衡假设局域平衡假设 5.3 熵流和熵产生熵流和熵产生 5.4 熵产生速率的基本方程熵产生速率的基本方程 5.5 昂色格倒易关系昂色格倒易关系 5.6 最小熵产生原理最小熵产生原理 5.7 非线性非平衡态热力学非线性非平衡态热力学第二页,本课件共有23页5.1 热力学从平衡态向非平衡态的发展热力学从平衡态向非平衡态的发展 迄今为止,我们所讨论的热力学基础及其应用均属于平衡态热力学范迄今为止,我们所讨论的热力学基础及其应用均属于平衡态热力学范畴。它主要由热力学三个定律作为基础构筑而成。它所定义的热力学函数,畴。它主要由热力学三个定律作为基础构筑而成。它所定义的热力学函数,如热力学温度如热力学温度T,压力,压力p,熵,熵S等等,在平衡态时才有明确意义。实等等,在平衡态时才有明确意义。实践证明,由平衡态热力学得到的结论,至今未有与实践相违背的事实。平践证明,由平衡态热力学得到的结论,至今未有与实践相违背的事实。平衡态热力学称为经典热力学,是物理化学课程的主要组成部分,它是初学衡态热力学称为经典热力学,是物理化学课程的主要组成部分,它是初学物理化学的大学生必须很好掌握的内容。物理化学的大学生必须很好掌握的内容。然而在自然界中发生的一切实际过程都是处在非平衡态下进然而在自然界中发生的一切实际过程都是处在非平衡态下进行的不可逆过程。例如,我们遇到的各种输运过程,诸如热传导、行的不可逆过程。例如,我们遇到的各种输运过程,诸如热传导、第三页,本课件共有23页 普里高京普里高京(prigogine I)(prigogine I)、昂色格、昂色格(Onsager L)(Onsager L)对非平衡态热对非平衡态热力学力学(或称为不可逆过程热力学或称为不可逆过程热力学)的确立和发展作出了重要贡献,从的确立和发展作出了重要贡献,从2020世纪世纪5050年代开始形成了热力学的新领域,即非平衡态热力学年代开始形成了热力学的新领域,即非平衡态热力学 (thermodynamics of no-equilibrium state)(thermodynamics of no-equilibrium state)。普里高京由于他对非。普里高京由于他对非平衡态热力学的杰出贡献,而荣获平衡态热力学的杰出贡献,而荣获19771977年诺贝尔化学奖。年诺贝尔化学奖。物质的扩散、动电现象、电极过程以及实际进行的化学反应过物质的扩散、动电现象、电极过程以及实际进行的化学反应过程等,随着时间的推移,系统均不断地改变其状态,程等,随着时间的推移,系统均不断地改变其状态,并且总是并且总是自发地从非平衡态趋向于平衡态。由于对这些实际发生的不可逆自发地从非平衡态趋向于平衡态。由于对这些实际发生的不可逆过程进行了持续不断地和非常深入地研究,促进了热力学从平衡过程进行了持续不断地和非常深入地研究,促进了热力学从平衡态向非平衡态的发展。态向非平衡态的发展。第四页,本课件共有23页 非平衡态热力学虽然在理论系统上还不够完善和成熟,但目前在一非平衡态热力学虽然在理论系统上还不够完善和成熟,但目前在一些领域中,如物质扩散、热传导、跨膜输运、动电效应、热电效应、电些领域中,如物质扩散、热传导、跨膜输运、动电效应、热电效应、电极过程、化学反应等领域中已获得初步应用,显示出它有广阔地发展和极过程、化学反应等领域中已获得初步应用,显示出它有广阔地发展和应用前景,已成为新世纪物理化学发展中一个新的增长点。应用前景,已成为新世纪物理化学发展中一个新的增长点。第五页,本课件共有23页 在平衡态热力学中,常用到两类热力学状态函数:在平衡态热力学中,常用到两类热力学状态函数:5.2局域平衡假设局域平衡假设(i)把所讨论的处于非平衡态把所讨论的处于非平衡态(温度、压力、组成不均匀温度、压力、组成不均匀)的系统,的系统,划分为许多很小的系统微元,以下简称系统元划分为许多很小的系统微元,以下简称系统元(system element)。每个系统元在宏观上足够小,以至于它的性质可以用该系统元内部的某一每个系统元在宏观上足够小,以至于它的性质可以用该系统元内部的某一点附近的性质来代表;在微观上又足够大,即它包含足够多的分子,多到点附近的性质来代表;在微观上又足够大,即它包含足够多的分子,多到可用统计的方法进行宏观处理。可用统计的方法进行宏观处理。一类如体积一类如体积V、物质的量、物质的量n等,它们可以用于任何系统,不管等,它们可以用于任何系统,不管系统内部是否处于平衡;系统内部是否处于平衡;另一类如温度另一类如温度T、压力、压力p、熵、熵S等,在平衡态中有明确意义,用等,在平衡态中有明确意义,用它们去描述非平衡态就有困难。它们去描述非平衡态就有困难。为解决这一难题,非平衡态热力学提出了局域平衡假设为解决这一难题,非平衡态热力学提出了局域平衡假设(Local-equilibrium hypothesis),要点如下:,要点如下:第六页,本课件共有23页 应该明确,局域平衡假设的有效范围是偏离平衡不远的系统。应该明确,局域平衡假设的有效范围是偏离平衡不远的系统。例如,对化学反应系统,要求例如,对化学反应系统,要求Ea/(RT)5。(iii)由于已假定由于已假定(t+dt)时刻每个系统元已达到平衡,于是可按平衡态时刻每个系统元已达到平衡,于是可按平衡态热力学的办法为每一个系统元严格定义其热力学函数,如热力学的办法为每一个系统元严格定义其热力学函数,如S、G等,即等,即(t+dt)时刻平衡态热力学公式皆可应用于每个系统元。就是说,时刻平衡态热力学公式皆可应用于每个系统元。就是说,处于非平衡态系统的热力学量可以用局域平衡的热力学量来描述。处于非平衡态系统的热力学量可以用局域平衡的热力学量来描述。局域平衡假设是非平衡态热力学的中心假设。局域平衡假设是非平衡态热力学的中心假设。(ii)在在t时刻,我们把划分出来的某系统元从所讨论的系统中孤立时刻,我们把划分出来的某系统元从所讨论的系统中孤立出来,并设经过出来,并设经过dt时间间隔,即在时间间隔,即在(t+dt)时刻该系统元已达到平衡态。时刻该系统元已达到平衡态。第七页,本课件共有23页非平衡态热力学所讨论的中心问题是熵产生。非平衡态热力学所讨论的中心问题是熵产生。5.3 熵流和熵产生熵流和熵产生对对封封闭闭系系统统,deS是是系系统统与与环环境境进进行行热热量量交交换换引引起起的的熵熵流流(entropy flow);对对敞敞开开系系统统,deS则则是是系系统统与与环环境境进进行行热热量量和和物物质交换共同引起的熵流。可以有质交换共同引起的熵流。可以有deS0,deS0或或deS=0。由热力学第二定律,对不可逆过程,有由热力学第二定律,对不可逆过程,有由热力学第二定律已知由热力学第二定律已知定义定义第八页,本课件共有23页diS是系统内部由于进行不可逆过程而产生的熵,称为熵产生是系统内部由于进行不可逆过程而产生的熵,称为熵产生(entropy production)。若将若将dS分解为两部分,即分解为两部分,即dS=deS+diS,即,即由此可得出,熵产生是一切不可逆过程的表征由此可得出,熵产生是一切不可逆过程的表征(diS0),即可用,即可用diS量度过程的不可逆程度。量度过程的不可逆程度。对隔离系统,对隔离系统,deS=0,则则即即第九页,本课件共有23页5.4 熵产生速率的基本方程熵产生速率的基本方程将将diS对时间微分,即对时间微分,即 定义定义 在局域平衡假设的条件下,系统中任何一个系统元内,熵在局域平衡假设的条件下,系统中任何一个系统元内,熵S、温度、温度T、压力、压力p,在,在W=0时,满足时,满足 第十页,本课件共有23页即即将上式对时间微分,可得到系统在不可逆过程中熵产生速率为将上式对时间微分,可得到系统在不可逆过程中熵产生速率为 当系统中存在温度差、浓度差、电势差等推动力时,都会发当系统中存在温度差、浓度差、电势差等推动力时,都会发生不可逆过程而引入熵产生。这些推动力被称为广义推动力生不可逆过程而引入熵产生。这些推动力被称为广义推动力(generalized force),而在广义推动力下产生的通量,称为广义通量,而在广义推动力下产生的通量,称为广义通量(generalized flux)。第十一页,本课件共有23页系统总的熵产生速率系统总的熵产生速率这是非平衡态热力学中总熵产生速率的基本方程。这是非平衡态热力学中总熵产生速率的基本方程。则为一切广义推动力与广义通量乘积之和,即则为一切广义推动力与广义通量乘积之和,即 当系统达到平衡态时,同时有当系统达到平衡态时,同时有 当系统临近平衡态当系统临近平衡态(或离平衡态不远时或离平衡态不远时)并且只有单一很弱的并且只有单一很弱的推动力时,从许多实验规律得出,广义通量和广义推动力间推动力时,从许多实验规律得出,广义通量和广义推动力间呈线性关系:呈线性关系:第十二页,本课件共有23页 我们所熟知的一些经验定律,如傅立叶热传导定律、牛顿粘度定我们所熟知的一些经验定律,如傅立叶热传导定律、牛顿粘度定律、费克第一扩散定律和欧姆电导定律,它们的数学表达式均可用式律、费克第一扩散定律和欧姆电导定律,它们的数学表达式均可用式(5.4.6)这种线性关系所包容。这种线性关系所包容。式式(5.4.6)中的比例系数中的比例系数L,称作唯象系数,称作唯象系数(phenomenological coefficient),可由实验测得,对以上几个经验定律,则,可由实验测得,对以上几个经验定律,则L分别为热分别为热导率、粘度、扩散系数和电导率。导率、粘度、扩散系数和电导率。式式(5.4.7)中所示的线性关系称为唯象方程中所示的线性关系称为唯象方程(phenomenological equation)。满足线性关系的非平衡态热力学称为线性非平衡态热力学。满足线性关系的非平衡态热力学称为线性非平衡态热力学(thermodynamics of no-equalibrium state of linear)。若所讨论的非平衡态系统中有一个以上的广义推动力时,若所讨论的非平衡态系统中有一个以上的广义推动力时,广义通量和广义推动力间的关系为广义通量和广义推动力间的关系为第十三页,本课件共有23页5.5 昂色格倒易关系昂色格倒易关系式式(5.4.8)中,中,L11、L22称为自唯象系数称为自唯象系数(auto-phenomenological coefficient);L12、L21称为交叉唯象系数称为交叉唯象系数(crose phenomenological coefficient)或干涉系数或干涉系数(interference coefficient)。设系统中存在两种广义推动力设系统中存在两种广义推动力X1和和X2,推动两个不可逆过程同,推动两个不可逆过程同 时发时发生,由之引起两个广义通量生,由之引起两个广义通量J1和和J2。则可建立唯象方程如下:。则可建立唯象方程如下:1931年,昂色格年,昂色格(Onsager L)推导出交叉唯象系数存在如下对推导出交叉唯象系数存在如下对称性质:称性质:第十四页,本课件共有23页 式式(5.4.9)称为昂色格倒易关系称为昂色格倒易关系(Onsagers reciprocity relations)。满足倒。满足倒易关系的近平衡区叫严格线性区。易关系的近平衡区叫严格线性区。式式(5.4.9)表明,当系统中发生的第一个不可逆过程的广义通表明,当系统中发生的第一个不可逆过程的广义通量量J1受到第二个不可逆过程的广义推动力受到第二个不可逆过程的广义推动力X2影响时,第二个不可影响时,第二个不可逆过程的广义通量逆过程的广义通量J2也必然受第一个不可逆过程的广义推动力也必然受第一个不可逆过程的广义推动力X1的影的影响,并且表征这两种相互干涉的交叉唯象系数相等。响,并且表征这两种相互干涉的交叉唯象系数相等。昂色格倒易关系是非平衡态热力学的重要成果,为许多实验事实所昂色格倒易关系是非平衡态热力学的重要成果,为许多实验事实所证实。但是,所定义的广义推动力和广义通量,只有同时满足式证实。但是,所定义的广义推动力和广义通量,只有同时满足式(5.4.3)和和(5.4.7)的关系,倒易关系才成立,才具有普遍性,而与系统的本性的关系,倒易关系才成立,才具有普遍性,而与系统的本性及广义推动力的本性无关。及广义推动力的本性无关。第十五页,本课件共有23页5.6 最小熵产生原理最小熵产生原理最小熵产生原理最小熵产生原理(principle of minmization entropy production rate)可表述为:可表述为:在非平衡态的线性区在非平衡态的线性区(近平衡区近平衡区),系统,系统处于定态时熵产生速率取最小值。处于定态时熵产生速率取最小值。它是它是1945年由普里高立的。年由普里高立的。为了讨论该原理,先说明什么叫定态为了讨论该原理,先说明什么叫定态?设有一容器充入设有一容器充入A、B两种气体形成均匀混合的气体系统。实验时,两种气体形成均匀混合的气体系统。实验时,把一温度梯度加到容器左右两器壁间,一为热壁、一为冷壁。实验观测把一温度梯度加到容器左右两器壁间,一为热壁、一为冷壁。实验观测到,一种气体在热壁上富集,而另一种气体则在冷壁上富集。这是由于到,一种气体在热壁上富集,而另一种气体则在冷壁上富集。这是由于热扩散带来的结果。此外,我们还热扩散带来的结果。此外,我们还第十六页,本课件共有23页会发现,温度梯度的存在不仅引起热扩散,同时还导致一个浓度会发现,温度梯度的存在不仅引起热扩散,同时还导致一个浓度梯度的产生,即自热壁至冷壁会存在梯度的产生,即自热壁至冷壁会存在A、B两种气体的浓度梯度。两种气体的浓度梯度。结果,熵一般地总是低于开始时气体均匀混合的熵值。如图结果,熵一般地总是低于开始时气体均匀混合的熵值。如图5.6.1所所示。示。图图5.6.1 混合气体扩散示意图混合气体扩散示意图第十七页,本课件共有23页在隔离系统中,不论系统初始处于何种状态,系统中所有的广义推动在隔离系统中,不论系统初始处于何种状态,系统中所有的广义推动力和广义通量自由发展的结果总是趋于零,最终达到平衡态。然而对一个力和广义通量自由发展的结果总是趋于零,最终达到平衡态。然而对一个系统强加一个外部条件,如前述热扩散例子,在系统两端强加温度梯度,系统强加一个外部条件,如前述热扩散例子,在系统两端强加温度梯度,会引起一个浓度梯度,于是系统中同时有一个引起热扩散的力会引起一个浓度梯度,于是系统中同时有一个引起热扩散的力Xq和一个引和一个引起物质扩散的力起物质扩散的力Xm,以及相应热扩散通量,以及相应热扩散通量Jq和物质扩散通量和物质扩散通量Jm。但是由。但是由于给系统强加的限制是恒定的热扩散力于给系统强加的限制是恒定的热扩散力Xq,而物质扩散力,而物质扩散力Xm和物质和物质扩散通量扩散通量Jm可以自由发展,发展的结果,系统最终会到达一个不随可以自由发展,发展的结果,系统最终会到达一个不随时间变化的状态,这时时间变化的状态,这时Jm=0,气体混合物系统的浓度呈均匀分布,但,气体混合物系统的浓度呈均匀分布,但热扩散通量依然存在。因此,这个不随时间变化的状态不是平衡态,而是热扩散通量依然存在。因此,这个不随时间变化的状态不是平衡态,而是非平衡定态,简称定态非平衡定态,简称定态(constant state)。在非平衡态的线性区,可以证明总熵产生速率具有下列特征:在非平衡态的线性区,可以证明总熵产生速率具有下列特征:第十八页,本课件共有23页式式(5.6.1)即为最小熵产生原理的数学表达式。它表明,在非平衡即为最小熵产生原理的数学表达式。它表明,在非平衡态的线性区,系统随着时间的发展总是朝着总熵产生速率减少态的线性区,系统随着时间的发展总是朝着总熵产生速率减少的方向进行,直至达到定态。在定态熵产生速率不再随时间变的方向进行,直至达到定态。在定态熵产生速率不再随时间变化。如图化。如图5.6.2所示。所示。图图5.6.2 线性区总熵产生随时间的变化线性区总熵产生随时间的变化第十九页,本课件共有23页(1)在非平衡态的线性区,非平衡定态是稳定的。设想,若系统已在非平衡态的线性区,非平衡定态是稳定的。设想,若系统已处于定态,假若环境给系统以微扰处于定态,假若环境给系统以微扰(或涨落或涨落),系统可偏离定态。而由最,系统可偏离定态。而由最小熵产生原理,此时的总熵产生值大于定态的总熵产生值,而且随时间的小熵产生原理,此时的总熵产生值大于定态的总熵产生值,而且随时间的变化总熵产生值要减少,直至达到定态,使系统又回到定态,因此非平衡变化总熵产生值要减少,直至达到定态,使系统又回到定态,因此非平衡定态是稳定的。定态是稳定的。(2)在非平衡态的线性区在非平衡态的线性区(即在平衡态附近即在平衡态附近)不会自发形成时空不会自发形成时空有序的结构,并且即使由初始条件强加一个有序结构有序的结构,并且即使由初始条件强加一个有序结构(如前述的热扩如前述的热扩散例子散例子),但随着时间的推移,系统终究要发展到一个无序的定态,但随着时间的推移,系统终究要发展到一个无序的定态,任何初始的有序结构将会消失。换句话说,在非平衡态线性区,自任何初始的有序结构将会消失。换句话说,在非平衡态线性区,自发过程总是趋于破坏任何有序,走向无序。发过程总是趋于破坏任何有序,走向无序。从最小熵产生原理可以得到如下重要结论:从最小熵产生原理可以得到如下重要结论:第二十页,本课件共有23页5.7 非线性非平衡态热力学非线性非平衡态热力学 对于化学反应,通量和推动力的线性关系只有在反应亲和力很小的对于化学反应,通量和推动力的线性关系只有在反应亲和力很小的情况下才会成立;而人们实际关心的大部分化学反应并不满足这样的条情况下才会成立;而人们实际关心的大部分化学反应并不满足这样的条件。当系统远离平衡态时,即热力学推动力很大时,通量和推动力就不件。当系统远离平衡态时,即热力学推动力很大时,通量和推动力就不再成线性关系。若将通量和推动力的函数关系以平衡态为参考态,作泰再成线性关系。若将通量和推动力的函数关系以平衡态为参考态,作泰勒勒(Taylor)级数展开,得到级数展开,得到:式式(5.7.1)中,第二项为某一单独推动力的作用而导致的通量;第三项以中,第二项为某一单独推动力的作用而导致的通量;第三项以后,为多种推动力共同作用导致的通量。此式表明通量后,为多种推动力共同作用导致的通量。此式表明通量第二十一页,本课件共有23页通量和推动力的非线性关系。符合这种非线性关系的非平衡态叫非平通量和推动力的非线性关系。符合这种非线性关系的非平衡态叫非平衡态的非线性区。研究非平衡态非线性区的热力学叫衡态的非线性区。研究非平衡态非线性区的热力学叫非线性非平衡非线性非平衡态热力学态热力学。显然,处在非线性区,线性唯象方程和昂色格倒易关系均不复存显然,处在非线性区,线性唯象方程和昂色格倒易关系均不复存在,当然最小熵产生原理也不会成立。处理远离平衡态的过程的行为,在,当然最小熵产生原理也不会成立。处理远离平衡态的过程的行为,单纯用非平衡态热力学方法已无能为力,还必须同时研究远离平衡态的单纯用非平衡态热力学方法已无能为力,还必须同时研究远离平衡态的非线性动力学行为。非线性动力学行为。综上所述,热力学的发展可概括为以下三个阶段:综上所述,热力学的发展可概括为以下三个阶段:第一个阶段:平衡态热力学第一个阶段:平衡态热力学熵产生及推动力和通量均为零。熵产生及推动力和通量均为零。第二十二页,本课件共有23页 平衡态热力学是平衡态热力学是19世纪的巨大成就,非平衡态热力学则是世纪的巨大成就,非平衡态热力学则是20世纪世纪的最新成就。可以预言,进入的最新成就。可以预言,进入21世纪,非平衡态热力学在理论上和应用上世纪,非平衡态热力学在理论上和应用上将会有突破性进展。将会有突破性进展。第三个阶段:非线性非平衡态热力学第三个阶段:非线性非平衡态热力学在非平衡态的非线性区,通在非平衡态的非线性区,通量是推动力的更复杂的函数。量是推动力的更复杂的函数。第二个阶段:线性非平衡态热力学第二个阶段:线性非平衡态热力学在非平衡态的线性区,推在非平衡态的线性区,推动力是弱的,通量与推动力呈线性关系。动力是弱的,通量与推动力呈线性关系。第二十三页,本课件共有23页

    注意事项

    本文(非平衡态热力学优秀PPT.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开