欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    经典单方程计量经济学模型(3).ppt

    • 资源ID:65773440       资源大小:1,008.51KB        全文页数:101页
    • 资源格式: PPT        下载积分:40金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要40金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    经典单方程计量经济学模型(3).ppt

    第三章第三章 经典单方程计量经济学模经典单方程计量经济学模型:多元回归型:多元回归 多元线性回归模型多元线性回归模型 多元线性回归模型的参数估计多元线性回归模型的参数估计多元线性回归模型的统计检验多元线性回归模型的统计检验多元线性回归模型的预测多元线性回归模型的预测回归模型的其他形式回归模型的其他形式回归模型的参数约束回归模型的参数约束3.1 多元线性回归模型多元线性回归模型 一、多元线性回归模型一、多元线性回归模型 二、多元线性回归模型的基本假定二、多元线性回归模型的基本假定 一、多元线性回归模型一、多元线性回归模型 多元线性回归模型多元线性回归模型:表现在线性回归模型中的解释变量有多个。一般表现形式一般表现形式:i=1,2,n其中:k为解释变量的数目,j称为回归参数回归参数(regression coefficient)。习习惯惯上上:把常常数数项项看成为一虚虚变变量量的系数,该虚变量的样本观测值始终取1。这样:模型中解释变量的数目为(模型中解释变量的数目为(k+1+1)也也被被称称为为总总体体回回归归函函数数的的随随机机表表达达形形式式。它它 的的非随机表达式非随机表达式为为:方程表示:方程表示:各变量各变量X X值固定时值固定时Y Y的平均响应的平均响应。j也也被被称称为为偏偏回回归归系系数数,表表示示在在其其他他解解释释变变量量保保持持不不变变的的情情况况下下,Xj每每变变化化1个个单单位位时时,Y的的均值均值E(Y)的变化的变化;或或者者说说j给给出出了了Xj的的单单位位变变化化对对Y均均值值的的“直直接接”或或“净净”(不含其他变量)影响。(不含其他变量)影响。总体回归模型总体回归模型n个随机方程的个随机方程的矩阵表达式矩阵表达式为为 其中其中样本回归函数样本回归函数:用来估计总体回归函数:用来估计总体回归函数其其随机表示式随机表示式:ei称为称为残差残差或或剩余项剩余项(residuals),可看成是可看成是总体回归函数中随机扰动项总体回归函数中随机扰动项 i的近似替代。的近似替代。样本回归函数样本回归函数的的矩阵表达矩阵表达:或或其中:其中:二、多元线性回归模型的基本假定二、多元线性回归模型的基本假定 假设1,解释变量是非随机的或固定的,且各X之间互不相关(无多重共线性)。假设2,随机误差项具有零均值、同方差及不序列相关性 假设3,解释变量与随机项不相关 假设4,随机项满足正态分布 上述假设的上述假设的矩阵符号表示矩阵符号表示 式:式:假设1,n(k+1)矩阵X是非随机的,且X的秩=k+1,即X满秩。假设2,假设3,E(X)=0,即 假设4,向量 有一多维正态分布,即 同一元回归一样,多元回归还具有如下两个重要假设:同一元回归一样,多元回归还具有如下两个重要假设:假设5,样本容量趋于无穷时,各解释变量的方差趋于有界常数,即n时,或 其中:Q为一非奇异固定矩阵,矩阵x是由各解释变量的离差为元素组成的nk阶矩阵 假设6,回归模型的设定是正确的。3.2 多元线性回归模型的估计多元线性回归模型的估计 估计方法:OLS、ML或者MM一、普通最小二乘估计一、普通最小二乘估计 *二、最大或然估计二、最大或然估计 *三、矩估计三、矩估计 四、参数估计量的性质四、参数估计量的性质 五、样本容量问题五、样本容量问题 六、估计实例六、估计实例 一、普通最小二乘估计一、普通最小二乘估计对于随机抽取的n组观测值如果样本函数样本函数的参数估计值已经得到,则有:i=1,2n根据最小二乘原理最小二乘原理,参数估计值应该是下列方程组的解 其中于是得到关于待估参数估计值的正规方程组正规方程组:正规方程组正规方程组的矩阵形式矩阵形式即由于XX满秩,故有 将上述过程用矩阵表示矩阵表示如下:即求解方程组:得到:于是:例例3.2.1:在例2.1.1的家庭收入家庭收入-消费支出消费支出例中,可求得 于是 正规方程组正规方程组 的另一种写法对于正规方程组正规方程组 于是 或(*)或(*)是多元线性回归模型正规方程组正规方程组的另一种写法(*)(*)样本回归函数的离差形式样本回归函数的离差形式i=1,2n其矩阵形式矩阵形式为 其中:在离差形式下,参数的最小二乘估计结果为 随机误差项随机误差项 的方差的方差 的无偏估计的无偏估计 可以证明,随机误差项的方差的无偏估计量为 *二、最大或然估计二、最大或然估计 对于多元线性回归模型易知 Y的随机抽取的n组样本观测值的联合概率即为变量Y的或然函数或然函数 对数或然函数为对对数或然函数求极大值,也就是对 求极小值。因此,参数的最大或然估计最大或然估计为为结果与参数的普通最小二乘估计相同结果与参数的普通最小二乘估计相同*三、矩估计三、矩估计(Moment Method,MM)OLS估计是通过得到一个关于参数估计值的正正规方程组规方程组并对它进行求解而完成的。该该正规方程组正规方程组 可以从另外一种思路来导:求期望:称为原总体回归方程的一组矩条件矩条件,表明了原总体回归方程所具有的内在特征。由此得到正规方程组正规方程组 解此正规方程组即得参数的MM估计量。易知MM估计量与与OLS、ML估计量等价。矩方法矩方法是是工具变量方法工具变量方法(Instrumental Variables,IV)和和广义矩估计方法广义矩估计方法(Generalized Moment Method,GMM)的基础的基础 在在矩方法矩方法中关键是利用了中关键是利用了 E(X)=0 如果某个解释变量与随机项相关,只要能找到1个工具变量,仍然可以构成一组矩条件。这就是IV。如果存在k+1个变量与随机项不相关,可以构成一组包含k+1方程的矩条件。这就是GMM。四、参数估计量的性质四、参数估计量的性质 在满足基本假设的情况下,其结构参数 的普通最小二乘估计、最大或然估计最大或然估计及矩估计矩估计仍具有:线性性线性性、无偏性无偏性、有效性有效性。同时,随着样本容量增加,参数估计量具有:渐近无偏性、渐近有效性、一致性渐近无偏性、渐近有效性、一致性。1、线性性、线性性 其中,C=(XX)-1 X 为一仅与固定的X有关的行向量 2、无偏性、无偏性 这里利用了假设:E(X)=0 3、有效性(最小方差性)、有效性(最小方差性)其中利用了 和 五、样本容量问题五、样本容量问题 所谓“最小样本容量最小样本容量”,即从最小二乘原理和最大或然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限。最小样本容量最小样本容量 样本最小容量必须不少于模型中解释变量样本最小容量必须不少于模型中解释变量的数目(包括常数项)的数目(包括常数项),即 n k+1因为,无多重共线性要求:秩(X)=k+1 2 2、满足基本要求的样本容量、满足基本要求的样本容量 从统计检验的角度从统计检验的角度:n30 时,Z检验才能应用;n-k8时,t分布较为稳定 一般经验认为一般经验认为:当n30或者至少n3(k+1)时,才能说满足模型估计的基本要求。模型的良好性质只有在大样本下才能模型的良好性质只有在大样本下才能得到理论上的证明得到理论上的证明 六、多元线性回归模型的参数估计实例六、多元线性回归模型的参数估计实例 例例3.2.2 在例2.5.1中,已建立了中国居中国居民人均消费民人均消费一元线性模型。这里我们再考虑建立多元线性模型。解释变量:解释变量:人均GDP:GDPP 前期消费:CONSP(-1)估计区间估计区间:19792000年Eviews软件估计结果 3.3 多元线性回归模型的统计检验多元线性回归模型的统计检验 一、拟合优度检验一、拟合优度检验 二、方程的显著性检验二、方程的显著性检验(F(F检验检验)三、变量的显著性检验(三、变量的显著性检验(t t检验)检验)四、参数的置信区间四、参数的置信区间 一、拟合优度检验一、拟合优度检验 1、可决系数与调整的可决系数、可决系数与调整的可决系数则 总总离差离差平方和的分解平方和的分解由于=0所以有:注意:注意:一个有趣的现象一个有趣的现象 可决系数可决系数该统计量越接近于1,模型的拟合优度越高。问题:问题:在应用过程中发现,如果在模型中增加一个解释变量,R2往往增大(Why?)这就给人一个错觉一个错觉:要使得模型拟合得好,只要使得模型拟合得好,只要增加解释变量即可要增加解释变量即可。但是,现实情况往往是,由增加解释变量个数引起的R2的增大与拟合好坏无关,R2需调整需调整。调整的可决系数调整的可决系数(adjusted coefficient of determination)在样本容量一定的情况下,增加解释变量必定使得自由度减少,所以调整的思路是:将残差平方将残差平方和与总离差平方和分别除以各自的自由度,以剔和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响除变量个数对拟合优度的影响:其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。*2、赤池信息准则和施瓦茨准则、赤池信息准则和施瓦茨准则 为了比较所含解释变量个数不同的多元回归模型的拟合优度,常用的标准还有:赤池信息准则赤池信息准则(Akaike information criterion,AIC)施瓦茨准则施瓦茨准则(Schwarz criterion,SC)这两准则均要求这两准则均要求仅当所增加的解释变量能够减少仅当所增加的解释变量能够减少AICAIC值或值或ACAC值时才在原模型中增加该解释变量值时才在原模型中增加该解释变量。Eviews的估计结果显示:中国居民消费二元例中:AIC=6.68 AC=6.83 中国居民消费一元例中:AIC=7.09 AC=7.19从这点看,可以说前期人均居民消费CONSP(-1)应包括在模型中。二、方程的显著性检验二、方程的显著性检验(F检验检验)方程的显著性检验,旨在对模型中被解释变方程的显著性检验,旨在对模型中被解释变量与解释变量之间的线性关系量与解释变量之间的线性关系在总体上在总体上是否显著是否显著成立作出推断。成立作出推断。1、方程显著性的、方程显著性的F检验检验 即检验模型 Yi=0+1X1i+2X2i+kXki+i i=1,2,n中的参数j是否显著不为0。可提出如下原假设与备择假设:H0:0=1=2=k=0 H1:j不全为0 F F检验的思想检验的思想来自于总离差平方和的分解式:TSS=ESS+RSS 如果这个比值较大,则X的联合体对Y的解释程度高,可认为总体存在线性关系,反之总体上可能不存在线性关系。因此因此,可通过该比值的大小对总体线性关系进行推可通过该比值的大小对总体线性关系进行推断断。根据数理统计学中的知识,在原假设H0成立的条件下,统计量 服从自由度为(k,n-k-1)的F分布 给定显著性水平,可得到临界值F(k,n-k-1),由样本求出统计量F的数值,通过 F F(k,n-k-1)或 FF(k,n-k-1)来拒绝或接受原假设H0,以判定原方程总体上总体上的线性关系是否显著成立。对于中国居民人均消费支出的例子:一元模型:F=285.92 二元模型:F=2057.3给定显著性水平=0.05,查分布表,得到临界值:一元例:F(1,21)=4.32 二元例:F(2,19)=3.52显然有 F F(k,n-k-1)即二个模型的线性关系在95%的水平下显著成立。2、关于拟合优度检验与方程显著性检关于拟合优度检验与方程显著性检验关系的讨论验关系的讨论 由可推出:与或在在中国居民人均收入中国居民人均收入-消费消费一元模型一元模型中,中,在在中国居民人均收入中国居民人均收入-消费消费二元模型二元模型中中,三、变量的显著性检验(三、变量的显著性检验(t检验)检验)方程的总体线性总体线性关系显著 每个解释变量每个解释变量对被解释变量的影响都是显著的 因此,必须对每个解释变量进行显著性检验,以决定是否作为解释变量被保留在模型中。这一检验是由对变量的这一检验是由对变量的 t t 检验完成的。检验完成的。1、t统计量统计量 由于 以cii表示矩阵(XX)-1 主对角线上的第i个元素,于是参数估计量的方差为:其中2为随机误差项的方差,在实际计算时,用它的估计量代替:因此,可构造如下t统计量 2、t检验检验 设计原假设与备择假设:H1:i0 给定显著性水平,可得到临界值t/2(n-k-1),由样本求出统计量t的数值,通过|t|t/2(n-k-1)或|t|t/2(n-k-1)来拒绝或接受原假设H0,从而判定对应的解释变判定对应的解释变量是否应包括在模型中。量是否应包括在模型中。H0:i=0 (i=1,2k)注意:注意:一元线性回归中,一元线性回归中,t t检验与检验与F F检验一致检验一致 一方面一方面,t检验与F检验都是对相同的原假设H0:1=0=0 进行检验;另一方面另一方面,两个统计量之间有如下关系:在中中国国居居民民人人均均收收入入-消消费费支支出出二二元元模模型型例中,由应用软件计算出参数的t值:给定显著性水平=0.05,查得相应临界值:t0.025(19)=2.093。可见,计计算算的的所所有有t值值都都大大于于该该临临界界值值,所以拒绝原假设。即:包包括括常常数数项项在在内内的的3个个解解释释变变量量都都在在95%的的水水平下显著,都通过了变量显著性检验。平下显著,都通过了变量显著性检验。四、参数的置信区间四、参数的置信区间 参参数数的的置置信信区区间间用来考察:在在一一次次抽抽样样中中所所估估计的参数值离参数的真实值有多计的参数值离参数的真实值有多“近近”。在变量的显著性检验中已经知道:在变量的显著性检验中已经知道:容易推出容易推出:在(1-)的置信水平下i的置信区间是 其中,t/2为显著性水平为、自由度为n-k-1的临界值。在中国居民人均收入中国居民人均收入-消费支出消费支出二元模型二元模型例中,给定=0.05,查表得临界值:t0.025(19)=2.093计算得参数的置信区间:0:(44.284,197.116)1:(0.0937,0.3489)2:(0.0951,0.8080)从回归计算中已得到:如何才能缩小置信区间?如何才能缩小置信区间?增大样本容量增大样本容量n n,因为在同样的样本容量下,因为在同样的样本容量下,n n越越大,大,t t分布表中的临界值越小,同时,增大样本容分布表中的临界值越小,同时,增大样本容量,还可使样本参数估计量的标准差减小;量,还可使样本参数估计量的标准差减小;提高模型的拟合优度提高模型的拟合优度,因为样本参数估计量的标,因为样本参数估计量的标准差与残差平方和呈正比,模型优度越高,残差准差与残差平方和呈正比,模型优度越高,残差平方和应越小。平方和应越小。提高样本观测值的分散度提高样本观测值的分散度,一般情况下,样本观测一般情况下,样本观测值越分散值越分散,(XX)-1的分母的的分母的|XX|的值越大,致使的值越大,致使区间缩小。区间缩小。3.4 多元线性回归模型的预测多元线性回归模型的预测 一、一、E(Y0)的置信区间的置信区间 二、二、Y0的置信区间的置信区间对于模型 给 定 样 本 以 外 的 解 释 变 量 的 观 测 值X0=(1,X10,X20,Xk0),可以得到被解释变量的预测值:它可以是总体均值E(Y0)或个值Y0的预测。但严格地说,这只是被解释变量的预测值的估计值,而不是预测值。为了进行科学预测,还需求出预测值的置信为了进行科学预测,还需求出预测值的置信区间,包括区间,包括E(Y0)和和Y0的的置信区间置信区间。一、一、E(Y0)的置信区间的置信区间易知 容易证明 于是,得到(1-)的置信水平下E(Y0)的置信区间置信区间:其中,t/2为(1-)的置信水平下的临界值临界值。二、二、Y0的置信区间的置信区间 如果已经知道实际的预测值Y0,那么预测误差为:容易证明 e0服从正态分布,即 构造t统计量 可得给定(1-)的置信水平下Y0的置信区间置信区间:中国居民人均收入中国居民人均收入-消费支出消费支出二元模型二元模型例中:2001年人均GDP:4033.1元,于是人均居民消费的预测值人均居民消费的预测值为 2001=120.7+0.22134033.1+0.45151690.8=1776.8(元)实测值实测值(90年价)=1782.2元,相对误差:相对误差:-0.31%预测的置信区间预测的置信区间:于是E(E(2001)的95%的置信区间为:或 (1741.8,1811.7)或 (1711.1,1842.4)同样,易得 2001的95%的置信区间为3.5 回归模型的其他函数形式回归模型的其他函数形式 一、模型的类型与变换一、模型的类型与变换 二、非线性回归实例二、非线性回归实例 在实际经济活动中,经济变量的关系是复杂的,直接表现为线性关系的情况并不多见。如著名的恩格尔曲线恩格尔曲线(Engle curves)表现为幂幂函数曲线函数曲线形式、宏观经济学中的菲利普斯曲线菲利普斯曲线(Pillips cuves)表现为双曲线双曲线形式等。但是,大部分非线性关系又可以通过一些简单的数学处理,使之化为数学上的线性关系,从而可以运用线性回归的方法进行计量经济学方面的处理。一、模型的类型与变换一、模型的类型与变换 1、倒数模型、多项式模型与变量的直接置换法、倒数模型、多项式模型与变量的直接置换法 例如,例如,描述税收与税率关系的拉弗曲线拉弗曲线:抛物线 s=a+b r+c r2 c0 s:税收;r:税率设X1=r,X2=r2,则原方程变换为 s=a+b X1+c X2 ck。如果出现n2F(n2,n1-k-1),则拒绝原假设,认为预测期发生了结构变化。例例3.6.2 中国城镇居民食品人均消费需求的邹氏检验。1、参数稳定性检验、参数稳定性检验19811994:RSS1=0.003240 19952001:(9.96)(7.14)(-5.13)(1.81)19812001:(14.83)(27.26)(-3.24)(-11.17)给定=5%,查表得临界值F0.05(4,13)=3.18 判断:判断:F值值临界值,拒绝参数稳定的原假设,表临界值,拒绝参数稳定的原假设,表明中国城镇居民食品人均消费需求在明中国城镇居民食品人均消费需求在1994年前后发年前后发生了显著变化。生了显著变化。2、邹氏预测邹氏预测检验检验给定=5%,查表得临界值F0.05(7,10)=3.18判断判断:F值值临界值,拒绝参数稳定的原假设临界值,拒绝参数稳定的原假设 *四、非线性约束四、非线性约束 也可对模型参数施加非线性约束非线性约束,如对模型施加非线性约束12=1,得到受约束回归模型受约束回归模型:该 模 型 必 需 采 用 非非 线线 性性 最最 小小 二二 乘乘 法法(nonlinear least squares)进行估计。非非线线性性约约束束检检验验是建立在最最大大似似然然原原理理基础上的,有最最大大似似然然比比检检验验、沃沃尔尔德德检检验验与拉拉格朗日乘数检验格朗日乘数检验.1、最大似然比检验、最大似然比检验(likelihood ratio test,LR)估计估计:无约束回归模型与受约束回归模型,方法方法:最大似然法,检验检验:两个似然函数的值的差异是否“足够”大。记L(,2)为一似然函数:无约束回归无约束回归:Max:受约束回归受约束回归:Max:或求极值:g():以各约束条件为元素的列向量,:以相应拉格朗日乘数为元素的行向量 约束:g()=0 受约束受约束的函数值不会超过的函数值不会超过无约束无约束的函数值的函数值,但如果约束条件为真约束条件为真,则两个函数值就非常“接近接近”。由此,定义似然比似然比(likelihood ratio):如果如果比值很小,说明说明两似然函数值差距较大,则应拒绝拒绝约束条件为真的假设;如果如果比值接近于,说明说明两似然函数值很接近,应接受接受约束条件为真的假设。具体检验具体检验时,由于大样本下:h是约束条件的个数。因此:通过通过LR统计量的统计量的 2 2分布特性来进行判断。分布特性来进行判断。在中国城镇居民人均食品消费需求例中国城镇居民人均食品消费需求例中,对零阶零阶齐次性齐次性的检验:LR=-2(38.57-38.73)=0.32 给出=5%、查得临界值临界值 2 20.05(1)(1)3.84,判断判断:LR 2 20.05(1),(1),不拒绝原约束的假设,不拒绝原约束的假设,表明表明:中国城镇居民对食品的人均消费需求函中国城镇居民对食品的人均消费需求函数满足零阶齐次性条件数满足零阶齐次性条件。、沃尔德检验、沃尔德检验(Wald test,W)沃尔德检验中,只须估计无约束模型。如对 在所有古典假设都成立的条件下,容易证明 因此,在1+2=1的约束条件下 记 可建立沃尔德统计量沃尔德统计量:如果有h个约束条件,可得到h个统计量z1,z2,zh 约束条件为真时,可建立大样本大样本下的服从自由度为h的渐近 2 分布统计量 其中,Z为以zi为元素的列向量,C是Z的方差-协方差矩阵。因此,W从总体上测量了无约束回归不满足约束条件的程度。从总体上测量了无约束回归不满足约束条件的程度。对对非线性约束非线性约束,沃尔德统计量,沃尔德统计量W的算法描述要复杂得多。的算法描述要复杂得多。3、拉格朗日乘数检验、拉格朗日乘数检验 拉格朗日乘数检验则只需估计受约束受约束模型.受约束回归是求最大似然法的极值问题:是拉格朗日乘数行向量,衡量各约束条件对最大似然函数值的影响程度。如果某一约束为真,则该约束条件对最大似然函数值的影响很小,于是,相应的拉格朗日乘数的值应接近于零。因此,拉格朗日乘数检验就是检验某些拉格朗日乘数的值是否“足够大”,如果“足够大”,则拒绝约束条件为真的假设。拉格朗日统计量LM本身是一个关于拉格朗日乘数的复杂的函数,在各约束条件为真的情况下,服从一自由度恰为约束条件个数的渐近2分布。n为样本容量,R2为如下被称为辅助回归辅助回归(auxiliary regression)的可决系数:如果约束是非线性的,辅助回归方程的估计比较复杂,但仍可按(*)式计算LM统计量的值。最后,一般地有最后,一般地有:LMLRW 同样地,如果为线性约束,LM服从一精确的2分布:(*)

    注意事项

    本文(经典单方程计量经济学模型(3).ppt)为本站会员(赵**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开