欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    兰州大学固体物理第2章晶体衍射知识分享.ppt

    • 资源ID:65785730       资源大小:1.39MB        全文页数:94页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    兰州大学固体物理第2章晶体衍射知识分享.ppt

    第二章 晶体(jngt)衍射1.1.晶体衍射晶体衍射(ynsh)(ynsh)的一般介绍的一般介绍 1.1.入射束入射束 通常作为晶体衍射通常作为晶体衍射(ynsh)(ynsh)而用的入射波有而用的入射波有 1)1)光子光子 E=h=hc/E=h=hc/,()=12.4/E=12.4/E(keVkeV)若波长为若波长为11、E E约为约为12.4keV 12.4keV,属于,属于x-rayx-ray范围,用来范围,用来作为入射束的作为入射束的x-rayx-ray可以是连续谱或单色的,可用来可以是连续谱或单色的,可用来分析晶体结构。分析晶体结构。第一页,共94页。第二章 晶体(jngt)衍射2 2)中子)中子 其德布罗意波的关系是:其德布罗意波的关系是:E=E=()=要要使使=1=1,则则E E 0.080.08 0.1eV0.1eV。中中子子不不带带电电,它它在在晶晶体体中中所所受受的的散散射射主主要要是是原原子子核核的的散散射射,但但中中子子的的磁磁距距较较大大(jio d)(jio d),主要研究磁性物质之间的相互作用。,主要研究磁性物质之间的相互作用。第二页,共94页。第二章 晶体(jngt)衍射(3)电子电子的能量与波长之间的关系(gun x):E=()=当电子波波长为1A,E=150 eV。电子在晶体中既受电子散射,又受原子散射,所以电子波在晶体中的散射很强,穿透晶体的能力很弱。第三页,共94页。第二章 晶体(jngt)衍射1.Bragg1.Bragg定律定律 Bragg Bragg把晶体分解成相互平行的把晶体分解成相互平行的晶面,每一个晶面都相当于一个半透晶面,每一个晶面都相当于一个半透明的镜子,当明的镜子,当x-rayx-ray射到晶面上时,射到晶面上时,晶面要反射一部分晶面要反射一部分x-rayx-ray并将大部分并将大部分x-rayx-ray透射到下一个晶面。当从相邻透射到下一个晶面。当从相邻的晶面上来的反射波有相同的位相,的晶面上来的反射波有相同的位相,称为称为(chn wi)Bragg(chn wi)Bragg峰,这种现象峰,这种现象称之为称之为BraggBragg反射。反射。第四页,共94页。第二章 晶体(jngt)衍射第五页,共94页。第二章 晶体(jngt)衍射 先计算相邻镜面反射的波程差是多少,先计算相邻镜面反射的波程差是多少,相邻镜面波程差为:相邻镜面波程差为:2dSin2dSin 当波程差等于波长整数倍时,就会发生当波程差等于波长整数倍时,就会发生相长干涉,即当相长干涉,即当n=2dSinn=2dSin ,n n称为称为反射级,上式也称为反射级,上式也称为BraggBragg定律,定律,即即与与d d有相同有相同(xin tn)(xin tn)的数量级,若的数量级,若d d 则不能观察到则不能观察到BraggBragg反射。反射。第六页,共94页。第二章 晶体(jngt)衍射2.2.散射波振幅的推导散射波振幅的推导 Laue Laue认为晶体是由放在点阵阵认为晶体是由放在点阵阵点上的微观物体点上的微观物体(离子、原子团离子、原子团)组组成成(z chn)(z chn),x-rayx-ray与晶体物体的与晶体物体的相互作用归结为组成相互作用归结为组成(z chn)(z chn)晶晶体的原子或原子团中的电子对电磁体的原子或原子团中的电子对电磁波的散射。波的散射。第七页,共94页。第二章 晶体(jngt)衍射 当当x-rayx-ray入射到晶体中时,每个离子入射到晶体中时,每个离子或原子都将作为散射中心或原子都将作为散射中心(zhngxn)(zhngxn)或或着说作为新的子波源,以特定的波长和着说作为新的子波源,以特定的波长和特定的方向将入射波再散射出去,特定的方向将入射波再散射出去,当从当从各个散射中心各个散射中心(zhngxn)(zhngxn)来的散射波相来的散射波相长干涉时,将出现散射波的极大值,散长干涉时,将出现散射波的极大值,散射波的强度决定于每个晶胞中电子的数射波的强度决定于每个晶胞中电子的数目和电子的分布。目和电子的分布。第八页,共94页。第二章 晶体(jngt)衍射第九页,共94页。第二章 晶体(jngt)衍射1.1.周期函数的傅立叶分析周期函数的傅立叶分析 晶体结构的特点在于平移对称性,晶晶体结构的特点在于平移对称性,晶体中任何一个用平移矢量联系起来的体中任何一个用平移矢量联系起来的点都具有相同的物理性质点都具有相同的物理性质(xngzh)(xngzh)。(+)=(),是代表如电),是代表如电荷密度、磁距密度、质量密度等局域荷密度、磁距密度、质量密度等局域性质性质(xngzh)(xngzh)的物理量,电子浓度为的物理量,电子浓度为 n n()=n=n(+),),第十页,共94页。第二章 晶体(jngt)衍射 对于任何对于任何(rnh)(rnh)一个周期函数常一个周期函数常常用来处理问题的方法是作傅立叶分常用来处理问题的方法是作傅立叶分析,看它由什么样的平面波分量组成,析,看它由什么样的平面波分量组成,波矢的取值如何,这种处理方法是处波矢的取值如何,这种处理方法是处理周期结构中波动过程的基本出发点。理周期结构中波动过程的基本出发点。第十一页,共94页。第二章 晶体(jngt)衍射考虑一个具有(jyu)晶体点阵周期性的函数:的付氏级数可用三角函数或指数函数来表示:=、为实数,为保证 具有(jyu)晶体点阵的周期性。第十二页,共94页。第二章 晶体(jngt)衍射写成指数函数的形式:=每一个指数项叫做一个付里叶分量(fn ling),是一个平面波。波矢量为:,p为整数。第十三页,共94页。第二章 晶体(jngt)衍射第十四页,共94页。第二章 晶体(jngt)衍射 倒易点阵是傅立叶空间中的点阵,倒易点阵的阵点告诉我们一个(y)具有晶体点阵周期性的函数傅立叶级数中的波矢在波矢空间的分布情况,倒易点阵阵点分布决定于晶体点阵的周期性质,一个(y)给定的晶体点阵,其倒易点阵是一定的,因此,一种晶体结构有两种类型的点阵与之对应:晶体点阵是真实空间中的点阵,量纲为L;倒易点阵是傅立叶空间中的点阵,量纲为L-1。第十五页,共94页。第二章 晶体(jngt)衍射 如果把晶体点阵本身理解为周期函如果把晶体点阵本身理解为周期函数,则倒易点阵就是数,则倒易点阵就是(jish)(jish)晶体点晶体点阵的傅立叶变换,所以倒易点阵也是阵的傅立叶变换,所以倒易点阵也是晶体结构周期性的数学抽象,只是在晶体结构周期性的数学抽象,只是在不同空间不同空间(波矢空间波矢空间)来反映来反映,其所以其所以要变换到波矢空间是由于研究周期性要变换到波矢空间是由于研究周期性结构中波动过程的需要。结构中波动过程的需要。第十六页,共94页。第二章 晶体(jngt)衍射以上分析同样可用于三维情况,对:总可以找到一组波矢,将展成傅氏级数,这些波矢在空间(kngjin)的规则排列,构成三维倒易点阵:以倒易点阵矢量为波矢的平面波具有T的周期性。第十七页,共94页。第二章 晶体(jngt)衍射2.倒易点阵矢量 假定(jidng)晶体点阵基矢为 ,倒易点阵基矢为 ,由下式定义:第十八页,共94页。第二章 晶体(jngt)衍射 这样定义的倒易点阵基矢和晶体点阵(jn t din zhn)基矢有如下性质:同理:第十九页,共94页。第二章 晶体(jngt)衍射 用 表示(biosh);表示(biosh)则上式可写成:表明倒易点阵任一基矢和晶体点阵中的两基矢正交。第二十页,共94页。第二章 晶体(jngt)衍射 与正点阵相同,由倒易点阵基矢 可以定义倒易点阵矢量(为整数),具有以上(yshng)形式的矢量称为倒易点阵矢量,即倒易点阵平移矢量,同晶体点阵类似,倒易点阵就是由倒易点阵矢量所联系的诸点的列阵。第二十一页,共94页。第二章 晶体(jngt)衍射 可以证明由此定义的倒易点阵矢量 正是前面由周期函数(zhu q hn sh)傅氏级数中的波矢,即 若 ,则 即可用 展成傅氏级数,用数学式子来表示就是:若 则 第二十二页,共94页。第二章 晶体(jngt)衍射证:若 则 必有 只有唯一(wi y)的一组并无多组解,只要 (n为正整数),则 就是周期函数傅氏级数中的波矢,就是倒易点阵阵点。又:第二十三页,共94页。第二章 晶体(jngt)衍射 傅氏级数中的波矢就是这里定义的倒易点阵矢量,故倒易点阵也就是由 所联系的诸点的列阵,只要函数有平移不变性,就可以用倒易点阵矢量 展成(zhn chn)傅氏级数,或者说,一个函数如果具有晶体点阵周期性,它的傅氏级数中的波矢只能是倒易点阵矢量。第二十四页,共94页。第二章 晶体(jngt)衍射 倒易点阵基矢由晶体点阵(jn t din zhn)基矢定义,一个晶体点阵(jn t din zhn)的倒易点阵是唯一的,尽管晶体点阵(jn t din zhn)基矢有不同取法,倒易点阵基矢也不至一组,但一种晶体点阵(jn t din zhn)只有唯一的一种倒易点阵与之对应。第二十五页,共94页。第二章 晶体(jngt)衍射3.简单点阵的倒易点阵 (1)点阵常数为a的一维点阵 正点阵基矢为 不能用定义(dngy)来求,要用正交关系,倒易点阵的基矢为 (利用 ),倒易点阵矢量为 为整数,点阵常数为 的一维点阵的倒易点阵是点阵常数 为 的一维点阵。第二十六页,共94页。第二章 晶体(jngt)衍射2)点阵(din zhn)常数为 的二维正方点阵(din zhn)二维正方点阵(din zhn)的基矢为:、,倒易点阵(din zhn)的基矢可用正交关系求得:,它仍是一个点阵(din zhn)常数为 的二维正方点阵(din zhn),倒易点阵(din zhn)矢量第二十七页,共94页。第二章 晶体(jngt)衍射(3)点阵常数为a的简单立方点阵 简单立方点阵的基矢为:、初基晶胞(jn bo)体积 倒易点阵的基矢为:同理 sc点阵的倒易点阵仍为sc点阵,点阵常数为 ,倒易点阵矢量第二十八页,共94页。第二章 晶体(jngt)衍射4)点阵常数为a的体心立方点阵正点阵的初基矢量为:初基晶胞体积(tj)倒易点阵的基矢:这组基矢决定了的是一个面心立方(fcc)点阵,点阵常数为:第二十九页,共94页。第二章 晶体(jngt)衍射(5).点阵(din zhn)常数为a的面心立方点阵(din zhn)面心立方点阵(din zhn)的基矢为:初基晶胞体积:倒易点阵(din zhn)基矢:同理 这与体心立方点阵(din zhn)的初基矢量形式相同,因此面心立方点阵(din zhn)的倒易点阵(din zhn)是体心立方点阵(din zhn),点阵(din zhn)常数为 第三十页,共94页。第二章 晶体(jngt)衍射 在在1414种布拉菲点阵中,只有四种点阵的正点阵与倒易点阵不种布拉菲点阵中,只有四种点阵的正点阵与倒易点阵不同,这四种点阵是:同,这四种点阵是:体心立方体心立方(lfng)(lfng)面心立方面心立方(lfng)(lfng)面心立方面心立方(lfng)(lfng)体心立方体心立方(lfng)(lfng)体心正交体心正交面心正交面心正交 面心正交面心正交体心正交体心正交 其他的点阵、正点阵与倒易点阵的对称操作相同,点对称性其他的点阵、正点阵与倒易点阵的对称操作相同,点对称性不变,倒易点阵的类型与正点阵相同。不变,倒易点阵的类型与正点阵相同。第三十一页,共94页。第二章 晶体(jngt)衍射4.倒易点阵(din zhn)的性质(1)基矢正交性 正点阵(din zhn)基矢为 倒易点阵(din zhn)基矢为 则 第三十二页,共94页。第二章 晶体(jngt)衍射(2)倒易点阵初基晶胞体积(tj)(3)倒易点阵的倒易点阵是晶体点阵本身即第三十三页,共94页。第二章 晶体(jngt)衍射(4)晶体点阵(din zhn)中一组点阵(din zhn)平面(),以晶面指数为指数的倒易点阵(din zhn)矢量 与这组晶面正交,并且面间距(即相邻平面之间的距离)。第三十四页,共94页。第三十五页,共94页。第二章 晶体(jngt)衍射证明:若离原点最近(zujn)的()晶面在 、三个晶轴上的截距为:、,只需证明 则 肯定垂直于()平面。第三十六页,共94页。第二章 晶体(jngt)衍射 =-=-=而 =同理 =0 ()第三十七页,共94页。第二章 晶体(jngt)衍射 面间距就是 或 在法线方向(fngxing)的投影,法线方向(fngxing)就是 的方向(fngxing),此时原点也在()晶面族的某一个平面上,因此只要求出原点与()晶面之间的距离即可。第三十八页,共94页。第二章 晶体(jngt)衍射 上面的结果表明了晶体点阵中的一组晶面可上面的结果表明了晶体点阵中的一组晶面可用倒易点阵中的一个阵点来表示用倒易点阵中的一个阵点来表示(定义定义(dngy)(dngy)了倒易点阵中的一个阵点了倒易点阵中的一个阵点,也就是说也就是说这组平面的法线与面间距均可用这组平面的法线与面间距均可用 来表示,这来表示,这组晶面就是唯一确定了组晶面就是唯一确定了)。知道了知道了 的方向,晶面组的法线就确定,的方向,晶面组的法线就确定,并且面间距也确定了,一个晶面组反映在倒易并且面间距也确定了,一个晶面组反映在倒易点阵中是一个阵点,就是以面指数为指数的倒点阵中是一个阵点,就是以面指数为指数的倒易矢量易矢量:第三十九页,共94页。第二章 晶体(jngt)衍射(5)以倒易点阵矢量为波矢的平面波具有(jyu)晶体点阵的周期性质 以 为波矢的平面波具有(jyu)晶体点阵的周期性,既平移后平面波不变,因为 则第四十页,共94页。第二章 晶体(jngt)衍射 正因为如此正因为如此(rc),(rc),一个有晶体点阵一个有晶体点阵的周期性的函数才能展成波矢为的周期性的函数才能展成波矢为 的的傅氏级数傅氏级数,也就是说只有也就是说只有 的波才的波才有周期性有周期性,才能存在,而不是任意平面才能存在,而不是任意平面波都有周期性,只有波都有周期性,只有 的波才与晶的波才与晶体的周期性相协调。体的周期性相协调。第四十一页,共94页。第二章 晶体(jngt)衍射5.5.劳厄衍射条件劳厄衍射条件 定理:一组倒易点阵矢量定理:一组倒易点阵矢量 确定可能的确定可能的x-x-rayray反射反射(所谓所谓(suwi)x-ray(suwi)x-ray反射是由各个反射是由各个方向的反射波发生相长干涉而来的方向的反射波发生相长干涉而来的),所有的,所有的 对应了可能的反射束。对应了可能的反射束。由于一个由于一个 对应一个可能的反射束,对应一个可能的反射束,另另一个一个 对应另一个可能的反射束,故对应另一个可能的反射束,故x-rayx-ray反反射的图象就是倒易点阵的沿某个晶带轴的映象射的图象就是倒易点阵的沿某个晶带轴的映象(不是晶体点阵的映象不是晶体点阵的映象)。第四十二页,共94页。第二章 晶体(jngt)衍射下面来证明(zhngmng)劳厄衍射条件,如图:第四十三页,共94页。第二章 晶体(jngt)衍射 考虑晶体中的体元 距原点为 ,晶体中各个方向的散射波相长干涉时相差 的两点间的散射波有一个波程差与位相差若散射是弹性散射,即 ,则入射波的波程差 ,散射波的波程差 ,由于(yuy)有这样一个波程差,相应的位相差为入射波:散射波:总的位相差:相距 两点的散射波相差的相因子为:第四十四页,共94页。第二章 晶体(jngt)衍射 对于x-ray的衍射(ynsh)来说,散射波的振幅与体元 中的电子数(或电子浓度)成正比,从位于 处体元 的散射振幅正比于 ,为电子浓度,考虑到位相差与原点处位置的差别,则散射振幅(未考虑比例因子)在整个晶体中散射波的振幅为:这也就是整个晶体对散射波振幅的贡献。第四十五页,共94页。第二章 晶体(jngt)衍射 为方便起见,引入 ,称为散射矢量,即散射过程中波矢的改变量,则整个(zhngg)晶体对散射波振幅的贡献为:是具有晶体点阵周期性的函数。可把 展成傅氏级数:(把 展成了傅氏级数)代入上式得:第四十六页,共94页。第二章 晶体(jngt)衍射 当 时(即等于某一倒易点阵矢量时),相因子(ynz)为1,积分后这项为 为极大值,而对于 的其它各项基本上趋于零 要使 为极大,则,若 ,就是一个小量,=就是Laue衍射条件,这也是各阵点的散射波相长干涉的条件第四十七页,共94页。第二章 晶体(jngt)衍射 若对散射矢量 进行扫描(连续改变入射波矢),也就是让 依次等于一个倒易点阵矢量,可得到(d do)一系列反射束,由此可得到(d do)倒易点阵的映象。这也就是一开始所说的定理:一组倒易点阵矢量确定可能的x-ray反射,即:+=第四十八页,共94页。第二章 晶体(jngt)衍射 对于弹性散射 ()上式两边平方得:或 由于 是倒易点阵矢量,-也是倒易点阵矢量,所以上式可写成 这就是周期结构中各阵点弹性散射波的相长干涉(gnsh)条件,这个条件不限于x-ray,对其它波也同样适用。第四十九页,共94页。第二章 晶体(jngt)衍射第五十页,共94页。第二章 晶体(jngt)衍射 实际上弹性散射的Laue衍射条件就是Bragg定理在倒易空间的表现形式,我们可以证明这一点:由 而 ,(这里(zhl)的 不是最短的 )由图:则 代入 第五十一页,共94页。第二章 晶体(jngt)衍射 在Laue衍射条件中的 对应的散射峰(Bragg峰)可看作与 垂直(chuzh)的晶面组的Bragg反射,出现在Bragg定理中的反射级 正好是 与最短的 之间的倍数。如衍射条件满足时:代表 (100)面的一级反射 代表 (100)面的二级反射 代表 (110)面的一级反射 代表 (110)面的二级反射第五十二页,共94页。第二章 晶体(jngt)衍射 Laue衍射条件的另一种表达形式是Laue方程 用 、分别(fnbi)点乘 得:这就是Laue方程,三个方程同时成立,等于Laue衍射条件第五十三页,共94页。第二章 晶体(jngt)衍射 Laue方程意思(y s)是:应在以 为轴的锥面上,夹角是一个恒定值,同理 也应在以 、为轴的锥面上,即 应同时落在三个圆锥面的交线上,当对 连续扫描 使 =,就得到一个反射束的极大值,x-ray实验方法正是利用了这个原理。第五十四页,共94页。第二章 晶体(jngt)衍射第五十五页,共94页。第二章 晶体(jngt)衍射3.布里渊区(BZ)1.什么是布里渊区 布里渊区定义为倒易点阵(din zhn)的维格纳塞斯晶胞,作WS晶胞时的中垂面称为Bragg平面。布里渊区是Laue衍射条件的几何表示法第五十六页,共94页。第二章 晶体(jngt)衍射 从原点出发最小的布里渊区称为第一布里渊区(或从原点出发不穿过任何Bragg平面所能到达的区域)。从第一布里渊区出发,只穿过一个中垂面(不包括第一BZ)所能到的达区域称为第二布里渊区(因为(yn wi)波矢空间被中垂面分成了一块块的区域)。第五十七页,共94页。第二章 晶体(jngt)衍射 以此类推,从第n 个BZ出发只穿过一个Bragg平面所能到达的不包括(boku)n-1个BZ区的那个区域称为第n+1 BZ 各级BZ有相同的体积,边界是Laue衍射条件的几何表示法。第五十八页,共94页。第二章 晶体(jngt)衍射2.几种简单点阵的第一BZ(1)点阵常数(chngsh)为 的一维点阵 第一BZ就是 -的区域。第五十九页,共94页。第二章 晶体(jngt)衍射第六十页,共94页。第二章 晶体(jngt)衍射2)点阵常数(chngsh)为 的二维正方点阵第一 BZ就是-(横轴)、-(纵轴)的正方形,体积为:第六十一页,共94页。第二章 晶体(jngt)衍射第六十二页,共94页。第二章 晶体(jngt)衍射3)点阵常数为 的简单立方(lfng)点阵 第一 BZ就是边长为 的立方(lfng)体,体积为:倒易点阵的初基矢量:、第六十三页,共94页。第二章 晶体(jngt)衍射(4)点阵常数为 的体心立方点阵倒易点阵为点阵常数为 的面心立方点阵,倒易点阵最短基矢为 、,第一(dy)BZ是一个菱形十二面体,体积为第六十四页,共94页。第二章 晶体(jngt)衍射(5)点阵常数为 面心立方点阵 倒易点阵为点阵常数为 的体心立方点阵,最近邻为:,次最短近邻为:、,第一(dy)BZ是一个截面八面体或十四面体,第一(dy)BZ的体积为:第六十五页,共94页。第二章 晶体(jngt)衍射4.x-ray的实验几何图 椐Laue衍射条件,Ewarld提出简单构图法 考虑任一晶体(jngt)的倒易点阵,在弹性散射中,波长不变,。在波矢空间先画入射波矢,然后以入射波矢的端点为圆心,以 为半径画一个球,称为反射球,当且仅当倒易点阵的阵点落在反射球面上时,时,满足Laue衍射条件,可得到加强了的反射波,而球内或球外的点都不满足Laue衍射条件。第六十六页,共94页。第二章 晶体(jngt)衍射第六十七页,共94页。第二章 晶体(jngt)衍射1.Laue法入射波为连续x-ray(波长有一定的分布范围,一般为0.22)波矢 方向不变,反射(fnsh)球的半径在 的范围内变化,只要倒易点阵的阵点在此范围内都可得到反射(fnsh)束,由于0.22的范围不太大,落在此区间的倒易点阵不会太多(是有限的),因而反射(fnsh)束也不会太多。第六十八页,共94页。第二章 晶体(jngt)衍射第六十九页,共94页。第二章 晶体(jngt)衍射2.旋转晶体法 采用单色x-ray,但允许晶体的方位发生变化,即对扫描,底片装在与转动轴同轴的圆筒中,在转动中有些晶面满足Bragg定理,即 ,根据底片上的图案可分析结构(jigu)。晶体旋转,倒易点阵也随之转动,在旋转过程中若有倒易点阵落在球面上则产生反射束,这种方法可用于结构(jigu)分析。第七十页,共94页。第二章 晶体(jngt)衍射3.粉末法 样品(yngpn)为粉末或多晶样品(yngpn)(宏观尺度很小,1 m左右,但从微观角度来看还是很大的,原子是周期排列的),由于粉末或晶粒的 取向是任意的,若x-ray的波长及方向固定,就相当于旋转法中的晶体在旋转,而且转轴同时也在旋转,粉末法中的图象与旋转法中让转轴再旋转而得到的图象是很相近的。第七十一页,共94页。第二章 晶体(jngt)衍射 无论采取哪种方法,是满足衍射条件的基本根据,当衍射条件满足时,各阵点来的散射波发生相长(xin chn)干涉(即散射波位相相同),若每个阵点上是一个单个原子,问题比较简单,若阵点上不是单个原子,而是一个基元,那么问题就比较复杂,这时基元中的每一个原子都会成为点散射中心,基元中的各原子的散射又会发生相互干涉,此时就要考虑基元中各原子的散射波的相互干涉问题。第七十二页,共94页。第二章 晶体(jngt)衍射 Laue衍射条件只是考虑了各阵点上散射波的相长干涉条件,因而对一定的晶体结构,可能会出现尽管Laue条件满足(mnz),而由于基元中各原子散射波之间发生相互干涉而使得总散射波强度为零的情况,所以要对基元内部作傅立叶分析。第七十三页,共94页。第二章 晶体(jngt)衍射5.基元的几何结构因子 就是考虑在衍射(ynsh)条件满足时,即 时,基元内各原子散射波的相互干涉情况以及对总散射波的贡献,我们从散射波振幅的表达式入手 当衍射(ynsh)条件满足时,上式可写成 第七十四页,共94页。第二章 晶体(jngt)衍射 式中 应当是晶体中各原子在 点处对电子密度贡献之和,如一个二维点阵,原点在顶角上,晶胞中的所有原子组成一个基元,表示(biosh)晶胞中第 个原子相对于晶胞顶角的位矢,而阵点的位矢为 ,空间任一点 处的电子浓度应是所有原子在这一点处电子浓度贡献之和,即:第七十五页,共94页。第二章 晶体(jngt)衍射第七十六页,共94页。第二章 晶体(jngt)衍射 相当于晶胞中第 个原子相对于原点的位矢,相当于空间任一点 与 的位矢,将上式代入散射振幅(zhnf)表达式中可得:为求 ,需作变数变换,令 则 于是第七十七页,共94页。第二章 晶体(jngt)衍射 =且对 求和,就等于晶胞数 ,则 令 称为(chn wi)原子的形状因子或原子的散射因子,则 令 称为(chn wi)基元的几何结构因子,则 第七十八页,共94页。第二章 晶体(jngt)衍射 代表一个基元(或一个晶胞)里面的各个原子的散射波相互干涉的结果对总散射波振幅的影响。如果基元中的原子配置使得 =0,则基元中无散射波发出,也就是说,此时虽然从点阵的角度来看Laue衍射条件是满足的,但基元中无散射波,则空间点阵(kn jin din zhn)的衍射要消失,这就是所谓的消光,衍射谱线消失的规律称为消光规律,可用来分析基元中的原子的排列,决定基元中各原子的相对位置、原子的种类和倒易点阵矢量。第七十九页,共94页。第二章 晶体(jngt)衍射由于基元中的原子(yunz)的位矢可用基矢表示:且 1 因此可得基元结构因子的表达式为:为基元中的原子(yunz)数。第八十页,共94页。第二章 晶体(jngt)衍射1.体心立方结构的选用立方惯用晶胞,即sc点阵,基元中有两个原子(yunz),原子(yunz)坐标分别为(000)、(),若为同种原子(yunz),则 利用 =通常也写作第八十一页,共94页。第二章 晶体(jngt)衍射 当 =奇数时,此时 =0 消光(xio un)当 =偶数时,此时 =如金属钠为体心立方结构,x-ray衍射不存在(100)、(300)、(111)等谱线,而存在(200)、(110)、(222)等谱线。第八十二页,共94页。第二章 晶体(jngt)衍射2.面心立方结构的 仍选用sc点阵,用立方晶轴,基元中有四个原子(yunz),坐标为:(000)、()、()、()则:=第八十三页,共94页。第二章 晶体(jngt)衍射 当 、均为偶数时 =4 当 、均为奇数(j sh)时 =4 当 、奇、偶均有时 =0如(111)、(200)反射时是允许的,而(110)、(100)等反射是不允许的。第八十四页,共94页。第二章 晶体(jngt)衍射6.原子形状因子 晶体物质对x-ray的作用归根结底是晶体中的电子对x-ray的散射,是各阵点的散射波的相长干涉条件 =,前面(qin mian)讲过基元结构因子中有一个(),称为原子形状因子,表示第 个原子的散射能力。第八十五页,共94页。第二章 晶体(jngt)衍射 若原子中的电子是任意分布的,若原子中的电子是任意分布的,则原子形状因子的计算较复杂,但则原子形状因子的计算较复杂,但对一些特殊情况,我们还可以进行对一些特殊情况,我们还可以进行分析,若原子的电子密度的分布是分析,若原子的电子密度的分布是球对称的,可选择球对称的,可选择(xunz)(xunz)一个坐一个坐标轴,使得标轴,使得 在在 的方向,换用球坐的方向,换用球坐标体积元标体积元第八十六页,共94页。第二章 晶体(jngt)衍射第八十七页,共94页。第二章 晶体(jngt)衍射第八十八页,共94页。第二章 晶体(jngt)衍射 即 若原子(yunz)的各部分的电子密度集中于球心上,可看作 函数,原子(yunz)各部分的电子密度集中于球心上,就意味着在 处集中了同样的总电子密度,那么只有 对被积函数才有贡献。第八十九页,共94页。第二章 晶体(jngt)衍射 又因为(yn wi)则 点电荷的原子形状因子就等于它的原子序数,无论被积函数 是什么样的函数,是原子的总电子数。第九十页,共94页。第二章 晶体(jngt)衍射 实际上散射波的振幅表达式中是一个电子的散射波对总散射波振幅的贡献为单位进行(jnxng)度量的,是与散射波振幅成正比的量,并非真正的散射波振幅,若一个点电荷对散射波振幅的贡献是 ,则 是与散射波振幅成正比的量。第九十一页,共94页。第二章 晶体(jngt)衍射 原子的形状因子是原子的散射波振幅与一个点电荷电子散射波振幅之比,就表示(biosh)原子的散射是一个电子散射波的 倍,实际上是 的傅立叶变换。第九十二页,共94页。第二章 晶体(jngt)衍射 在这里在这里(zhl)(zhl)要特别注意零结构因要特别注意零结构因子的物理意义,即基元中各原子的相对子的物理意义,即基元中各原子的相对位置使得各衍射波相消,位置使得各衍射波相消,此时,尽管此时,尽管LaueLaue衍射条件满足,但从基元中没有散衍射条件满足,但从基元中没有散射波发出,空间点阵的反射就会消失,射波发出,空间点阵的反射就会消失,相应的衍射谱线就不会出现,根据零结相应的衍射谱线就不会出现,根据零结构因子可以分析基元的组成。构因子可以分析基元的组成。第九十三页,共94页。第二章 晶体(jngt)衍射 第二章倒易点阵和晶体衍射 内容提要1.倒易点阵和倒易点阵初基矢量2.倒易点阵矢量与晶面指数间的关系 3.x-射线(shxin)衍射的布喇格定律和劳厄条件4.布里渊区5.实验衍射方法6.基元的几何结构因子第九十四页,共94页。

    注意事项

    本文(兰州大学固体物理第2章晶体衍射知识分享.ppt)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开