欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    3.1.3 导数的几何意义.ppt

    • 资源ID:66096473       资源大小:657KB        全文页数:25页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    3.1.3 导数的几何意义.ppt

    平均变化率函数y=f(x)的定义域为D,x1.x2D,f(x)从x1到x2平均变化率为:割线的斜率OABxyy=f(x)x1x2f(x1)f(x2)x2-x1=xf(x2)-f(x1)=y回回 顾顾我们把物体在某一时刻的速度称为瞬时速度.从函数y=f(x)在x=x0处的瞬时变化率是:即我们称它为函数 y=f(x)在 x=x0 处的导数,记作 或 回回 顾顾由导数的意义可知,求函数y=f(x)在点x0处的导数的基本方法是:注意注意:这里的增量不是一般意义上的增量,它可正也可负.自变量的增量x的形式是多样的,但不论x选择哪种形式,y也必须选择与之相对应的形式.回回 顾顾Pl l问问题题1 1 平面几何中我们是怎样判断直线是否是圆的割线或切线的呢?问题问题2 2:能否将圆的切线的概念推广为一般曲线的切线:直线与曲线有唯一公共点时,直线叫曲线过该点的切线?如果能,请说明理由;如果不能,请举出反例。不不 能能xyol2l1AB0 xy那么对于一般的曲线,切线该如何寻找呢?PPnoxyy=f(x)割割线线切线切线T导数的几何意义导数的几何意义:我们发现,当点Pn沿着曲线无限接近点P即x0时,割线P Pn趋近于确定位置PT.则我们把直线PT称为曲线在点P处的切线.问题问题:割线PPn的斜率kn与切线PT的斜率k有什么关系?割线PPn的斜率:设相对于 的增加量为 ,则 当点Pn无限趋近于点P即x0时,kn无限趋近于切线PT的斜率k.这个概念:提供了求曲线上某点切线的斜率的一种 方法;切线斜率的本质函数在x=x0处的导数.因此,函数f(x)在x=x0处的导数就是切线PT的斜率.即即:PQoxyy=f(x)割割线线T切线切线要注意,曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.圆的切线定义并不适用于一般的曲线。通过逼近的方法,将割线趋于的确定位置的直线定义为切线(交点可能不惟一)适用于各种曲线。所以,这种定义才真正反映了切线的直观本质。根据导数的几何意义,在点P附近,曲线可以用在点P处的切线近似代替。大多数函数曲线就一小范围来看,大致可看作直线,所以,某点附近的曲线可以用过此点的切线近似代替,即“以直代曲”(以简单的对象刻画复杂的对象)例例1:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.QPy=x2+1xy-111OjMDyDx因此,切线方程为y-2=2(x-1),即y=2x.求曲线在某点处的切线方程的基本步骤:求出函数y=f(x)在点x0处的导数f (x0)利用点斜式求切线方程.(若点不知,则先求出点的坐标)练习练习:如图已知曲线 ,求:(1)点P处的切线的斜率;(2)点P处的切线方程.yx-2-112-2-11234OP即点P处的切线的斜率等于4.(2)在点P处的切线方程是y-8/3=4(x-2),即12x-3y-16=0.(1)求出函数在点x0处的导数 ,即为曲线在点(x0,f(x0)的切线的斜率。(2)根据直线方程的点斜式写出切线方程,即1.求切线方程的步骤:小小 结结 无限逼近的极限思想是建立导数概念、用导数定义求 函数的导数的基本思想,丢掉极限思想就无法理解导 数概念。2.导数是从众多实际问题中抽象出来的具有相同的数学表达式的一个重要概念,要从它的几何意义和物理意义了认识这一概念的实质,学会用事物在全过程中的发展变化规律来确定它在某一时刻的状态。以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。我们把物体在某一时刻的速度称为瞬时速度.从函数y=f(x)在x=x0处的瞬时变化率是:即我们称它为函数 y=f(x)在 x=x0 处的导数,记作 或 回回 顾顾 这个概念:提供了求曲线上某点切线的斜率的一种方法;切线斜率的本质函数在x=x0处的导数.要注意,曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在3)此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.求曲线在某点处的切线方程的基本步骤:求出P点的坐标;利用切线斜率的定义求出切线的斜率;利用点斜式求切线方程.讲解:课本讲解:课本P78 例例2、例、例3在不致发生混淆时,导函数也简称导数函数导函数 由函数 f(x)在 x=x0处求导数的过程可以看到,当x=x0时,f(x0)是一个确定的数.那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.即:如何求函数y=f(x)的导数?看一个例子看一个例子:a.导数是从众多实际问题中抽象出来的具有相同的数学表达式的一个重要概念,要从它的几何意义和物理意义认识这一概念的实质,学会用事物在全过程中的发展变化规律来确定它在某一时刻的状态。b.要切实掌握求导数的三个步骤:(1)求函数的增 量;(2)求平均变化率;(3)取极限,得导数。小小 结结(3)函数 f(x)在点x0处的导数 就是导函数 在x=x0处的函数值,即 。这也是求函数在点x0处的导数的方法之一。(2)函数的导数,是指某一区间内任意点x而言的,就是函数 f(x)的导函数 。(1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。c.弄清“函数f(x)在点x0处的导数”、“导函数”、“导数”之间的区别与联系。(1)求出函数在点x0处的变化率 ,得到曲线 在点(x0,f(x0)的切线的斜率。(2)根据直线方程的点斜式写出切线方程,即求切线方程的步骤:作业:作业:P80 习题习题A组组 5、6

    注意事项

    本文(3.1.3 导数的几何意义.ppt)为本站会员(赵**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开