欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    3.2.1立体几何中的向量方法(1).ppt

    • 资源ID:66096808       资源大小:2.38MB        全文页数:49页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    3.2.1立体几何中的向量方法(1).ppt

    3.2 立体几何中的向量方法立体几何中的向量方法(1)直线的方向向量与平面的法向量)直线的方向向量与平面的法向量、平行与垂直关系及夹角问题平行与垂直关系及夹角问题高二数学高二数学 选修选修2-1共线向量定理共线向量定理:复习:复习:共面向量定理共面向量定理:研究 从今天开始从今天开始,我们将进一步来体会向量这一工我们将进一步来体会向量这一工具在立体几何中的应用具在立体几何中的应用.思考思考1:1、如何确定一个点、直线、平面在空间的位置?、如何确定一个点、直线、平面在空间的位置?2、在空间中给一个定点、在空间中给一个定点A和一个定方向(向量),能和一个定方向(向量),能确定一条直线在空间的位置吗?确定一条直线在空间的位置吗?3、给一个定点和两个定方向(向量),能确定一个平、给一个定点和两个定方向(向量),能确定一个平面在空间的位置吗?面在空间的位置吗?4、给一个定点和一个定方向(向量),能确定一个平、给一个定点和一个定方向(向量),能确定一个平面在空间的位置吗?面在空间的位置吗?OP一、点的位置向量一、点的位置向量ABP二、直线的向量参数方程二、直线的向量参数方程此方程称为此方程称为直线的向量参数方程。直线的向量参数方程。这样这样点点A和向量和向量 不仅可以确定直线不仅可以确定直线 l的位的位置,还可以具体写出置,还可以具体写出l上的任意一点。上的任意一点。PO 除除 此之外此之外,还可以用垂直于平面的直线的方向还可以用垂直于平面的直线的方向向量向量(这个这个平面的法向量平面的法向量)表示空间中平面的位置表示空间中平面的位置.这样,点这样,点O与向量与向量 不仅可以确定平面不仅可以确定平面 的位的位置,还可以具体表示出置,还可以具体表示出 内的任意一点。内的任意一点。三、平面的法向量三、平面的法向量A平面的法向量:平面的法向量:如果表示向量如果表示向量 的有向线段所在的有向线段所在直线垂直于平面直线垂直于平面 ,则称这个向量垂直于平面,则称这个向量垂直于平面 ,记作记作 ,如果,如果 ,那,那 么么 向向 量量 叫做叫做平面平面 的的法向量法向量.给定一点给定一点A和一个向量和一个向量 ,那么那么过点过点A,以向量以向量 为法向量的平面是为法向量的平面是完全确定的完全确定的.几点注意:几点注意:1.法向量一定是非零向量法向量一定是非零向量;2.一个平面的所有法向量都互一个平面的所有法向量都互相平行相平行;3.向量向量 是平面的法向量,向是平面的法向量,向量量 是与平面平行或在平面是与平面平行或在平面内,则有内,则有l 因为方向向量与法向量可以确定直线和平面的因为方向向量与法向量可以确定直线和平面的位置,所以我们应该可以利用直线的方向向量与平面位置,所以我们应该可以利用直线的方向向量与平面的法向量表示空间直线、平面间的的法向量表示空间直线、平面间的平行、垂直、夹角平行、垂直、夹角等位置关系等位置关系.你能用直线的方向向量表示空间两直线你能用直线的方向向量表示空间两直线平行、垂直的位置关系以及它们之间的夹角吗?你能平行、垂直的位置关系以及它们之间的夹角吗?你能用平面的法向量表示空间两平面平行、垂直的位置关用平面的法向量表示空间两平面平行、垂直的位置关系以及它们二面角的大小吗?系以及它们二面角的大小吗?思考思考2:lm平行关系:平行关系:llm垂直关系:垂直关系:l四、平行关系:四、平行关系:五、垂直关系:五、垂直关系:巩固性训练11.设设 分别是直线分别是直线l1,l2的方向向量的方向向量,根据根据下下 列条件列条件,判断判断l1,l2的位置关系的位置关系.平行平行垂直垂直平行平行巩固性训练21.设设 分别是平面分别是平面,的的法向量法向量,根据根据 下列条件下列条件,判断判断,的位置关系的位置关系.垂直垂直平行平行相交相交1、设平面、设平面 的法向量为的法向量为(1,2,-2),平面平面 的法向量的法向量为为(-2,-4,k),若若 ,则,则k=;若若 则则 k=。2、已知已知 ,且,且 的方向向量为的方向向量为(2,m,1),平面平面的法向量为的法向量为(1,1/2,2),则则m=.3、若若 的方向向量为的方向向量为(2,1,m),平面平面 的法向量为的法向量为(1,1/2,2),且且 ,则,则m=.4-5-84巩固性训练3例例1.用向量方法证明用向量方法证明 定理定理 一个平面内的两条相交直线与另一个平面平行一个平面内的两条相交直线与另一个平面平行,则这两个平面平行则这两个平面平行已知已知 直线直线l与与m相交相交,例例2 四棱锥四棱锥P-ABCD中,底面中,底面ABCD是正方是正方形形,PD底面底面ABCD,PD=DC=6,E是是PB的的中点,中点,DF:FB=CG:GP=1:2.求证:求证:AE/FG.ABCDP PG GXYZF FE EA(6,0,0),F(2,2,0),E(3,3,3),G(0,4,2),AE/FG 证证 :如图所示:如图所示,建立建立空间直角坐标系空间直角坐标系./AEAE与与FGFG不共线不共线几何法呢?几何法呢?例例3 四棱锥四棱锥P-ABCD中,底面中,底面ABCD是正是正方形,方形,PD底面底面ABCD,PD=DC,E是是PC的的中点,中点,(1)求证:求证:PA/平面平面EDB.ABCDP PE EXYZG解解1 立体立体几何法几何法ABCDP PE EXYZG解解2:如图所示建立空间直角坐标系,点:如图所示建立空间直角坐标系,点D为坐标原点,设为坐标原点,设DC=1(1)证明:连结证明:连结AC,AC交交BD于点于点G,连结连结EGABCDP PE EXYZ解解3:如图所示建立空间直角坐标系,点:如图所示建立空间直角坐标系,点D为坐标原点,设为坐标原点,设DC=1(1)证明:证明:设平面设平面EDB的法向量为的法向量为ABCDP PE EXYZ解解4:如图所示建立空间直角坐标系,点:如图所示建立空间直角坐标系,点D为坐标原点,设为坐标原点,设DC=1(1)证明:证明:解得解得 x,ABCDPEFXYZ 证1:如图所示建立空间直角坐标系,设DC=1.例例3 四棱锥四棱锥P-ABCD中,底面中,底面ABCD是正方形,是正方形,PD底面底面ABCD,PD=DC,E是是PC的中点,作的中点,作EF PB交交PB于点于点F,(2)求证:求证:PB 平面平面EFD.ABCDPEFXYZ 证2:例例3 四棱锥四棱锥P-ABCD中,底面中,底面ABCD是正方形,是正方形,PD底面底面ABCD,PD=DC,E是是PC的中点,作的中点,作EF PB交交PB于点于点F,(2)求证:求证:PB 平面平面EFD.练练:如如图图,已知矩形,已知矩形和矩形和矩形所在平面相交于所在平面相交于ADAD,点,点分分别别在在对对角角线线上,且上,且求求证证:ABCEFDMN几何法呢?几何法呢?A1xD1B1ADBCC1yzEF是是BB1,1,,CD中点,求证:中点,求证:D1F 例例4 4 正方体正方体中,中,E、F分分别别平面平面ADE.证明:设正方体棱长为证明:设正方体棱长为1,为单位为单位正交正交 基底,建立如图所示坐标系基底,建立如图所示坐标系D-xyz,所以所以,E,E是是AA1 1中点,中点,例例5 5 正方体正方体平面平面C1 1BD.证明:证明:E求证:求证:平面平面EBD设正方体棱长为设正方体棱长为2,建立如图所示坐标系建立如图所示坐标系平面平面C1BD的一个法向量是的一个法向量是E(0,0,1)D(0,2,0)B(2,0,0)设平面设平面EBD的一个法向量是的一个法向量是平面平面C1 1BD.平面平面EBD异面直线所成角的范围:异面直线所成角的范围:思考:思考:结论:结论:线线角:线线角:直线与平面所成角的范围:思考:思考:结论:结论:线面角:线面角:ll面面角:面面角:二面角的范围:法向量法法向量法注意注意法向量的方向:一进一出,二面角等于法向量夹角;法向量的方向:一进一出,二面角等于法向量夹角;同进同出,二面角等于法向量夹角的补角同进同出,二面角等于法向量夹角的补角六、夹角:六、夹角:例例3 如图,在四棱锥如图,在四棱锥P-ABCD中,底面中,底面ABCD是是正方形,侧棱正方形,侧棱PD底面底面ABCD,PD=DC,E是是PC的的中点,作中点,作EFPB交交PB于点于点F.(3)求二面角求二面角C-PB-D的大小。的大小。ABCDP PE EF FABCDPEFXYZ(3)解 建立空间直角坐标系,设DC=1.例例3 如图,在四棱锥如图,在四棱锥P-ABCD中,底面中,底面ABCD是是正方形,侧棱正方形,侧棱PD底面底面ABCD,PD=DC,E是是PC的的中点,作中点,作EFPB交交PB于点于点F.(3)求二面角求二面角C-PB-D的大小。的大小。ABCDPEFXYZ平面平面PBC的一个法向量为的一个法向量为 解2 如图所示建立空间直角坐标系,设DC=1.平面平面PBD的一个法向量为的一个法向量为G 例例3 如图,在四棱锥如图,在四棱锥P-ABCD中,底面中,底面ABCD是是正方形,侧棱正方形,侧棱PD底面底面ABCD,PD=DC,E是是PC的的中点,作中点,作EFPB交交PB于点于点F.(3)求二面角求二面角C-PB-D的大小。的大小。ABCDP PE EF F 解3 设DC=1.例例4 4:如如图图3 3,甲站在水,甲站在水库库底面上的点底面上的点A A处处,乙站在水,乙站在水坝坝斜面上的点斜面上的点B B处处。从。从A A,B B到直到直线线 (库底与水坝的交线)的距离(库底与水坝的交线)的距离ACAC和和BDBD分别为分别为 和和 ,CD,CD的长为的长为 ,AB,AB的长为的长为 。求库底与水坝所成二面角的余弦值。求库底与水坝所成二面角的余弦值。解:解:如图,如图,化为向量问题化为向量问题根据向量的加法法则有根据向量的加法法则有于是,得于是,得设向量设向量 与与 的夹角为的夹角为 ,就是库底与水坝所成的二面角。就是库底与水坝所成的二面角。因此因此ABCD所以所以所以库底与水坝所成二面角的余弦值为所以库底与水坝所成二面角的余弦值为进行向量运算进行向量运算所以:解:以点C为坐标原点建立空间直角坐标系 如图所示,设 则 C|所以所以 与与 所成角的余弦值为所成角的余弦值为设平面xyz小结:小结:1.异面直线所成角:2.直线与平面所成角:lDCBA3.二面角:ll一进一出,一进一出,二面角等于二面角等于法向量的夹法向量的夹角;角;同进同出,同进同出,二面角等于二面角等于法向量夹角法向量夹角的补角。的补角。

    注意事项

    本文(3.2.1立体几何中的向量方法(1).ppt)为本站会员(赵**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开