焊接工艺简介.ppt
LOGO焊接质量分析焊接质量分析 莫卓亚莫卓亚 2007.8.201 焊接过程出现的问题以及解决方法焊接过程出现的问题以及解决方法问题问题可能出现的原因可能出现的原因建议解决办法建议解决办法虚焊虚焊不一致的冲击力度检查Z滑块的平滑度或检查换能器电缆是否太紧检查弹簧力度,焊接力度和缓冲力度拧紧弹簧螺丝和焊头螺丝搜索高度太低,应设定 100um重新校正钢嘴和换能器,必要时更换换能器小的或不一致的焊接压力/功率检查并确定焊接功率和力度,设定焊接宽度 1.4DUSG校正结果不正确检查换能器,电阻=1324欧,频率=6263.35KHZ重新校正钢嘴及换能器,必要时更换USG板及换能器马达偏压失调马达偏压失调检查并确保四个马达的偏压补偿检查并确保四个马达的偏压补偿15mA100um设定较低的z搜索速度USG校正不正确检查换能器及钢嘴,必要时重新校正或更换USG板及换能器焊接元件未能适当地夹在夹具上引起的元件浮动或扭曲重新校正工作夹具夹板和挡块焊线太硬使用较软的焊线USG打火过程中西它轴振动用皮带张紧测试仪检查并保证皮带张紧读数为0.65-1 焊接过程出现的问题以及解决方法焊接过程出现的问题以及解决方法问题问题可能出现原因可能出现原因建议解决办法建议解决办法焊焊接接宽宽度度不不一一致致焊接元件未能适当地夹在夹具上引起的元件浮动或扭曲重新校正工作夹具夹板和挡块在USG打火过程中Z移动阻塞或接触振动检查Z滑块的润滑情况及换能器电缆是否太紧钢嘴损坏或未清洁更换钢嘴或用20%NaOH 溶液在超声波清洁器中清洗不一致的焊接冲击力度检查焊接力度,1.25mil的焊线尺寸对应16-32gf焊接力度,40-100gf缓冲力度如果搜索高度太低,应增加搜索高度,应设为100um检查换能器悬臂的支点,拧紧簧片螺丝和钢嘴螺丝USG打火过程中西它轴振动用皮带张紧测试仪检查并保证皮带张紧读数为0.65-0.75mmUSG校正不正确检查换能器及钢嘴,必要时重新校正或更换USG板及换能器1 焊接过程出现的问题以及解决方法焊接过程出现的问题以及解决方法问题问题可能出现的原因可能出现的原因建议解决的办法建议解决的办法线弧线弧不一不一致、致、焊线焊线弯曲、弯曲、焊线焊线下垂下垂及及焊线焊线损坏损坏较大焊线角度及较小焊线间距保持管芯旋转一致把常用的铜嘴换成精密间距的铜嘴增大EOB1,EOB2,重新设定高度及减小焊接时间1,焊接时间2线路径张力不一致检查线张紧及润滑程度线夹、毛细管、换能器及引线框架之间未校准重新校准焊线路径线夹感应动作不一致增加线夹与钢嘴之间的间隙(1.4-1.8mm),张力度为100gf,开关力度为130gf,检查润滑度和电阻,如果润滑不良应清洁螺线管铁心,必要时改变VCM线圈钢嘴损坏或未清洁更换钢嘴或用20%NaOH 溶液在超声波清洁器中清洗焊线质量不好更换新焊线或较硬的焊线1 焊接过程出现的问题以及解决方法焊接过程出现的问题以及解决方法问题问题可能出现原因可能出现原因建议解决的办法建议解决的办法定定位位失失败败光学系统问题手动轻推光学元件,如果屏幕镜像偏移,应紧固光学元件用螺丝起子橡胶的一头轻敲光管,如果屏幕镜像偏移,应紧固同轴光元件及光学镜片XY工作台问题用手推动XY平台,如果屏幕镜像偏移,应检查横向滚珠的摩擦力及系统的全部力矩拧紧XY马达耦合螺丝松开耦合XY马达并旋转马达轴,检查润滑程度,必要时应更换检查XY滑座的横向滚珠,确保无滑脱检查驱动板的35V(31.538.5V)及80V(6888V)电源用Home键检查XY工作台失步,应确保XY及西它轴无失步,如有时出现一个失步,应调节XY及西它轴的移位感应器,直到无失步为止,但z向可允许4步的失步西它装配方面的问题推动工作夹具,如果屏幕镜像偏移,应拧紧工作螺丝及计时皮带滑轮螺丝用皮带张紧测试仪检查并保证皮带张紧读数为0.65-0.75mm确定西它轴无失步,如果有时发现有一个失步,应调节西它移位感应器,直到无失步焊线问题通过线路径如果有任何损坏,就会引起导致位置不精确的弯曲现象,应仔细检查通过线路径,观察有无尖锐边缘钢嘴问题检查在换能器上钢嘴安装时的钢嘴/定位螺丝孔,钢嘴不允许有任何移动空间,必要时应重新调解通过焊线路径的任何焊线损坏都会引起焊线弯曲导致位置不精确重新校准焊线路径检查孔直径,必要时更换钢嘴或用20%NaOH 溶液在超声波清洁器中清洗焊接元件未能适当地夹在夹具上引起的元件浮动或扭曲重新校正工作夹具夹板和挡块1 焊接过程出现的问题以及解决方法焊接过程出现的问题以及解决方法问题问题可能出现的原因可能出现的原因建议解决的办法建议解决的办法搜搜索索颤颤动动焊头问题增大搜索高度检查焊线压力,对应1.25mil 焊线尺寸,焊线压力为16-32gf检查Z滑块的润滑情况及换能器电缆是否太紧增加会减少缓冲力度=40-100gf拧紧簧片螺丝和钢嘴螺丝检查接触感应器电阻(应小于0.8欧)不要使更换或用酒精清洁进给和扯线方面的问题在检测螺线管功能表中,检查进线/扯线移动情况,确保螺线管的有效功能及平滑移动检查支承组件的润滑情况,确保轴承适当的预备装载,必要时应拆下此组件进行检测检查进线/扯线的弹簧力度(100gf+-10)拧紧簧片螺丝和钢嘴螺丝检查进线/扯线控制杆的垂直度检查进线/扯线螺线管间隙=0.2-0.25mm检查z滑块及导杆的润滑程度2 Three factors affecting the bonding resultvThree factors that will affect the bonding result should be considered in the design of the wire bonder:vFAB forming technologyvBonding technologyvLoop technology (from JauLiang Chen,Member IEEE)2.1 FAB forming technologyvThe parameters which affect the gold wire ball formation include:v1.Tail length left after second bonderv2.Type and shape of capillaries usedv3.Material characteristics of gold wirev4.Supplied voltage,current and time of EFO unitv5.Gap between tail and electrode platev6.Relative position between capillary and electrode 2.1 FAB Modeling for Gold WB for different WDvDifferent EFO settings can achieve the same FAB size for the same wire diameter Fig1.EFO time-FAB charts for 1.0 mil Au at 30mA,40mA and 50mA EFO currentsvThese results conclude that the different levels of EFO settings deliver the same input energy to produce the same FAB or output 2.1 FAB Modeling for Gold WB for different WDvEFO输入的能量理想表示为:v对于一个确定的bonding系统,R是确定的,当EFO放电击穿空气间隙时,可以将R忽略v因此:v理想情况,能量完全传递时,n=2v因为存在能量损失,所以n=2.1 FAB Modeling for Gold WB for different WDv理想情况下,输入能量理想情况下,输入能量=输出能量输出能量v输出能量可由输出能量可由FAB size 表示表示v输入能量可由输入能量可由EFO current and EFO time 表示表示v在相同的设置和环境下在相同的设置和环境下2.1 FAB Modeling for Gold WB for different WDvThe energy transfer efficiency charts in Figure show a direct relationship between the FAB size and the EFO input energy for each reference wire diameter.vFig2:Energy Transfer Efficiency charts for:0.6mil,0.8mil,1.0mil,1.5mil,2mil,2.3mil,2.7mil and 3.2mil Au 2.1 FAB Modeling for Gold WB for different WDvThe EFO settings required to achieve the desired FAB size can be calculated from the Energy Transfer Efficiency chartsvShortcoming in using the Energy Transfer Efficiency charts to carry out FAB size predictions for a particular wire size is that reference data points are required for that same wire size.v A,B are constants for each particular 2.1 FAB Modeling for Gold WB for different WDv利用上面的公式,输入的能量直接对应于wire size Fig3:Constant Energy Gap Chart for 0.6mil to 3.2mil Au 2.1 FAB Modeling for Gold WB for different WDv1.There is a constant input energy change as FAB ratio changes across the range of wire diametersv2.This is due to the use of FAB ratios,instead of the absolute FAB size.v3.A 10%change in FAB ratio will lead to a 10%change in the absolute FAB size,will lead to a proportional change in 2.1 FAB Modeling for Gold WB for different WDvA single characteristic equation can be formulated to calculate the FAB size for any wire diameter from Fig3vThe equation was found to be more accurate when it describes the energy transfer relationship for fine and heavy wire separately,as shown in Figures 4 and 5.Fig4:Constant Energy Gap Chart for fine wires and Fig5 Constant Energy Gap Chart for heavy medium wires:0.6mil to less than 2mil wire 2.0mil to 3.2mil 2.1 FAB Modeling for Gold WB for different WDvThe following equation,which is derived from the constant energy gap concept,is the single characteristic equation that describes the relationship between the delivered input EFO energy and the FAB size,which is the measurable output energy.vWhere the coefficients and variables are shown in Table 2.1 FAB Modeling for Gold WB for different WDvTable 1:Coefficients of the semi-empirical model for fine,medium and heavy Au wires.Wire diameter in milsFABDesired FAB in umFR0.6 to 22 to 3.2Fine,medium wireHeavy wireC1-0.9640.487C21.1690.199C34.157-3.922C4-6.077-2.011C5-5.75010.456C612.0777.682C73.260-8.410C8-3.016-2.1 FAB Modeling for Gold WB for different WDv对于公式的总结vThis semi-empirical equation(半经验主义公式),which can be implemented in the wire bonder software,can serve as a tool to calculate the EFO time needed to form the desired FAB size that was keyed in by the 2.1 FAB Modeling for Gold WB for different WDvShortcoming in using semi-empirical modelvGiven changes in bonding environment,setups or conditions that affect the FAB size formed at the same EFO settings and wire diameter,a new set of reference FAB data points can be collected to numerically modify the semi-empirical model.vThe methodology to build the model will still be the same.Therefore,the application of this model can also be extended to copper wire bonding,as long as a set of reference copper FAB data points are 2.1 FAB Modeling for Gold WB for different WDvVerification of Semi-empirical ModelvThe verification FAB data points were collected from 0.6mil,0.7mil,0.8mil,0.9mil,1.0mil,1.2mil,1.5mil,2.0mil,2.3mil,2.5mil,2.7mil and 3.0mil and 3.2mil Au wire,over a range of EFO current and time settings.The model proved to be highly consistent and reliable in predicting the Au FAB 2.2 Taguchi DOE实验设计法实验设计法FAB成型成型工艺参数优化工艺参数优化3个疑问?vPART2只考虑了EFO supplying time and EFO current 来预测FAB ball size 有没有道理?v如何证明EFO supplying time and EFO current are the two parameters affecting the FAB ball size most?vPART3 Taguchi DOE 如何实现 FAB 成型工艺参数优化?2.2 Taguchi DOE实验设计法实验设计法FAB成型成型工艺参数优化工艺参数优化vTaguchi方法原理方法原理vTaguchi方法是日本学者田口玄一提出的一种试验设计方法,它用到一种特别的正交表。v正交表的符号为:v其中字母L表示正交表,n为正交试验的次数,q为试验的因素数,t为因素的水平数。这些标准的正交矩阵保证了用最少的实验次数来反映影响性能参数的所有因素的全部信息。2.2 Taguchi DOE实验设计法实验设计法FAB成型成型工艺参数优化工艺参数优化v正交矩阵的特性为均衡分散性和整齐可比性:v(1)每一独立变量垂直对应的一列有着特定的取值设置组合;每一变量的各水平出现相同的次数。(2)独立变量的每一个取值都被用到;(3)正交矩阵每一变量的取值顺序不能任意改变。这是因为正交矩阵中的任意两列是相互正交的,向量对权的内积为零2.2 Taguchi DOE实验设计法实验设计法FAB成型成型工艺参数优化工艺参数优化vTable2:实验因素和水平设置表vNote:EFO Supplying Time:1 scale=1msecv EFO Current:1 scale=5mAv EFO Voltage:1 scale=450Vv 1p=4.3umvTable1 shows the selection of each parameters level used in this study.IDParameterLevel1Level2Level3AEFO Supplying Time345BEFO Current 345CEFO Voltage456DTail Length47p81p116pESpark G2.2 Taguchi DOE实验设计法实验设计法FAB成型成型工艺参数优化工艺参数优化vTable3:experiment resultv正交表的符号为:2.2Taguchi DOE实验设计法实验设计法FAB成型成型工艺参数优化工艺参数优化v在在Taguchi分析中,采用信噪比分析中,采用信噪比S/N来研究各个参来研究各个参数对目标的影响。数对目标的影响。v本实验选用本实验选用 1 EFO Supplying Time 2 EFO Current 3 EFO Voltage 4 Tail Length 5 Spark Gap作为主要实验因素2.2 Taguchi DOE实验设计法实验设计法FAB成型成型工艺参数优化工艺参数优化vTable 4:S/N 2.2 Taguchi DOE实验设计法实验设计法FAB成型成型工艺参数优化工艺参数优化vFigure6:sensitivity diagramvFigure7:signal-to-noise ratio diagramvEFO current and EFO supplying time are the two parameters affecting the FAB ball size most.A,BA,B2.2 Taguchi DOE实验设计法实验设计法FAB成型成型工艺参数优化工艺参数优化v从figure7中可以得到,对信噪比影响最小的组合是:A1B1C1D1E3,这是粗糙得到一组较为优化的参数。v如何得到精确的经过优化的工艺参数组合?Using the Taguchi method with neural network,a small number of experiments can easily find the proper parameters 2.2 Taguchi DOE实验设计法实验设计法FAB成型成型工艺参数优化工艺参数优化vTable5:EBP neural network training pattern for experiment 2.2 Taguchi DOE实验设计法实验设计法FAB成型成型工艺参数优化工艺参数优化vTable6:EBP Prediction for experiment 2.2 Taguchi DOE实验设计法实验设计法FAB成型成型工艺参数优化工艺参数优化vTable 7:FAB ball size comparison between EBP prediction and verification resultsvFig 8:comparison between prediction and real ball 2.2 Taguchi DOE实验设计法实验设计法FAB成型成型工艺参数优化工艺参数优化vPart 3 conclusion in this part,the Taguchi method EBP together with EBP neural network was used to find the best parameters setting for gold wire ball formation.From the experiment results,the following can be concluded:1)By the Taguchi method,through a limited number of experiment,it is very easy to find the effect of process parameters.2)In this part,EFO current and EFO applying time are the two parameters that affect the FAB ball formation significantly.3)With EBP neural network training,one can predict the ball formation precisely.And with proper adjustment,the best process parameters can be set 3 Looping Technology实验细节实验细节vWire propertiseTwo gold ball bonding wire types,A and B,of 20m 3 Looping Technology 实验细节实验细节vWires Mechanical PropertiesvThe elongation to break(%EL),the break load(BL),and elastic modulus(E)of the wire A and wire B are summarized below.vWire A has higher break load compared to wire B.The elastic modulus of both wires is 3 Looping TechnologyFAB,Grain Size and HAZvFig.8.Average grain width at the neck of the FAB of the wire A and wire B.vWire A has a finer grain size at the neck compared to wire B for all FAB sizes.Increasing the FAB size increases the neck grain size,due to the larger heat 3 Looping Technology FAB,Grain Size and HAZvFig.9.Vickers hardness(HV)at the neck of the FABvWire A has a higher hardness than wire B and the microhardness decreases as the FAB size 3 Looping Technology FAB,Grain Size and HAZvFig.10.The HAZ length of the FAB of the wire A and BvIt was observed that wire A had longer HAZ compared to wire B and HAZ length increases as the FAB size 3 Looping Technologyball pull testvThe ball pull test results for wire A and B are shown in Fig.11vThere is no significant difference in the ball pull results betweenwire A and wire B at the same bonding condition.In addition,there seems to be a slight decrease in the ball pull force as the FAB size increases,and slight increase in the pull force as the loop height increases due to geometry 3 Looping TechnologyLooping Profile MeasurementsvIt was clear that wire A and wire B had different looping behavior at 35 and 45 m FAB 3 Looping TechnologyLooping Profile MeasurementsvIt was clear that wire A and wire B had similar looping behavior at 55 and 65 m FAB 3 Looping TechnologyLooping Profile MeasurementsvComparing wire A and wire B,it was clear the difference in the chemical composition between wire A and wire B played a role which contributed to their looping behavior.v The different alloying elements in the wire A and wire B were responsible for the different hardness,grain size,and HAZ length in both wires.v However,while the difference in hardness,grain size,and HAZ length in wire A and wire B were observed on all FAB sizes,it was not very clear why the difference in the loop profile was only observed in 35 and 45 m FAB sizes 3 Looping Technologystacked die packagevComparison of different wire bond looping profilesvA normal ball bonding process places a ball bond on the die first,performs a loop motion to the substrate,then places a stitch bond on the lead.vA reverse ball bonding process places a bump on the die pad first.After the bump is formed,a ball bond is placed on the substrate and the stitch bond is placed on the 3 Looping Technology stacked die packagevFigure 14.Folded forward loop with less than 3 mil loop height.v待补充4 补充材料补充材料拉力测试拉力测试断线点”晶片表面有污晶片表面有污秽秽 参数调较不恰当参数调较不恰当断线点”参数调较不恰当参数调较不恰当 焊线质量焊线质量 邦邦线线周周围围有污有污秽秽断线点”焊线质量焊线质量 铁钧铁钧有尖物有尖物断线点断线点”参数调较不恰当参数调较不恰当 焊线质量焊线质量 邦邦线线周周围围有污有污秽秽断线点断线点”厎板表面有污厎板表面有污秽秽 参数调较不恰当参数调较不恰当4 补充材料补充材料可接受邦线的规格可接受邦线的规格v ASM 标准标准宽度宽度(W)=1.3-1.8 长度长度(L)=2-2.2 线尾长度线尾长度(T)=0.5 =邦邦线的直径线的直径宽度宽度长度长度线尾长度线尾长度WTDL邦邦线的直径线的直径 线尾长度长度宽度邦线的直径4 补充材料补充材料邦线品质检查邦线品质检查沒有尾巴热邦邦线相连 冷邦尾巴过长邦移位没有尾巴尾巴过长冷邦偏位不可接受邦头的出现4 补充材料补充材料the ball bonding processv视频!视频!