欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    三角函数的几何表示.ppt

    • 资源ID:66188448       资源大小:439KB        全文页数:24页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    三角函数的几何表示.ppt

    三角函数的几何表示xyP(x,y)MA(1,0)一、任意角三角函数的定义一、任意角三角函数的定义:定义定义2:任意角任意角的三角函数还可以用终边上任意点的三角函数还可以用终边上任意点P(x,y)表示表示,设设OP=r,则则二、三角函数的定义域二、三角函数的定义域三角函数三角函数定义域定义域sincostanRR|k(kZ)三、三角函数在各象限的符号三、三角函数在各象限的符号+-00300450600900180027003600弧度sin cos tan 000110-100-101100不存在不存在不存在不存在其中其中kZ终边相同的角的同一终边相同的角的同一三角函数的值相等。三角函数的值相等。一、背景知识一、背景知识 任意角的三角函数任意角的三角函数是三角学中最基本是三角学中最基本最重要的概念之一。三角学起源于对三角最重要的概念之一。三角学起源于对三角形边角关系的研究,始于古希腊的喜帕恰形边角关系的研究,始于古希腊的喜帕恰斯、梅内劳斯和托勒密等人对天文的测量,斯、梅内劳斯和托勒密等人对天文的测量,在相当长的时期里隶属于天文学。直到在相当长的时期里隶属于天文学。直到1464年,德国数学家雷基奥蒙坦著年,德国数学家雷基奥蒙坦著论各论各种三角形种三角形,才独立于天文学之外对三角,才独立于天文学之外对三角知识作了较系统的阐说;知识作了较系统的阐说;1416世纪,三角世纪,三角学曾一度成为欧洲数学的主要内容,研究学曾一度成为欧洲数学的主要内容,研究的方面包括三角函数值表的编制、平面三的方面包括三角函数值表的编制、平面三角形和球面三角形的解法,三角恒等式的角形和球面三角形的解法,三角恒等式的建立和推导等等。建立和推导等等。1631年,三角学输入中年,三角学输入中国,三角学在中国早期比较通行的名称是国,三角学在中国早期比较通行的名称是“八线八线”和和“三角三角”。“八线八线”是指在单是指在单位圆上的八种三角函数线:位圆上的八种三角函数线:正弦线、余弦正弦线、余弦线、正切线、余切线、正割线、余割线线、正切线、余切线、正割线、余割线、正矢线、余矢线。随着科学的发展,三角正矢线、余矢线。随着科学的发展,三角函数成为研究自然界和生产实践中周期变函数成为研究自然界和生产实践中周期变化现象的重要数学工具,它在测量、力学化现象的重要数学工具,它在测量、力学工程和无线电学中有着广泛的应用。工程和无线电学中有着广泛的应用。探究:探究:角是一个几何概念,同时角的大小也具有数量角是一个几何概念,同时角的大小也具有数量特征特征.我们从数的观点定义了三角函数,我们从数的观点定义了三角函数,如果能从如果能从图形图形上找出三角函数的几何意义上找出三角函数的几何意义,就能实现,就能实现数与形的完美统数与形的完美统一一.xyoMP(x,y)p(x,y)Mxop(x,y)xoxyoxyoMMMMppp正弦线余弦线思考:思考:设设为锐角,你能根据正弦线和为锐角,你能根据正弦线和余弦线说明余弦线说明sinsincoscos 1 1吗?吗?P PO Ox xy yMMPMPOMOMOP=1OP=1正切线正切线正切线正切线:AT:AT A AT T问题问题1 1:如图,设角如图,设角为第一象限角,其终边与单为第一象限角,其终边与单位圆的交点为位圆的交点为P P(x x,y y),则),则 是正数,用是正数,用哪条有向线段表示角哪条有向线段表示角的正切值最合适?的正切值最合适?P PO Ox xy yM MAT TP PO Ox xy yM M正切线正切线正切线正切线 问题问题2 2:若角若角为第四象限角,其终边与单位为第四象限角,其终边与单位圆的交点为圆的交点为P P(x x,y y),则),则 是负数,是负数,此时用哪条有向线段表示角此时用哪条有向线段表示角的正切值最合适的正切值最合适?A AT TA AT TP PO Ox xy yM M思考:思考:若角若角为第二象限角,其终边与单位圆的交为第二象限角,其终边与单位圆的交点为点为P P(x x,y y),则),则 是负数,此时用哪条是负数,此时用哪条有向线段表示角有向线段表示角的正切值最合适?的正切值最合适?P PO Ox xy yM MA AT TA AT T思考:思考:若角若角为第三象限角,其终边与单位圆的交点为第三象限角,其终边与单位圆的交点为为P P(x x,y y),则),则 是正数,此时用哪条有向是正数,此时用哪条有向线段表示角线段表示角的正切值最合适?的正切值最合适?思考:思考:根据上述分析,你能描述正切线的几何特征吗根据上述分析,你能描述正切线的几何特征吗?过点过点A A(1 1,0 0)作单位圆的切线,与角)作单位圆的切线,与角的终边或其反的终边或其反向延长线相交于点向延长线相交于点T T,则,则AT=AT=tantan.A AT TO Ox xy yP PA AT TO Ox xy yP P思考:思考:当角当角的终边在坐标轴上时,角的终边在坐标轴上时,角的正切线的正切线的含义如何?的含义如何?O Ox xy yP PP P当角当角的终边在的终边在x x轴上时,角轴上时,角的正切线是一个点;的正切线是一个点;当角当角的终边在的终边在y y轴上时,角轴上时,角的正切线不存在的正切线不存在.例例1 1 作出下列各角的正弦线、余弦线、正切线:作出下列各角的正弦线、余弦线、正切线:比较大小:比较大小:sin1和和sin1.5;解:由三角函数线得解:由三角函数线得sin1cos1.5例例2 2 在在0 0 内,求使内,求使 成立的成立的的取值的取值范围范围.O Ox xy yP PM MP P1 1P P2 2例例3 3 求函数求函数 的定义域的定义域.O Ox xy yP P2 2M MP P1 1P P 求函数求函数 的定义域的定义域.求函数求函数 的定义域的定义域.思考:思考:观察下列不等式:观察下列不等式:你有什么一般猜想?你有什么一般猜想?思考:思考:对于不等式对于不等式(其中(其中为锐角),你能用数形结合思想证明吗?为锐角),你能用数形结合思想证明吗?P PO Ox xy yM MA AT T例练讲解例练讲解例3 设是任意角,作的正弦线、余弦线、正切线,由图证明下列各等式:sincos1;AoyPMTxN证明:(1)若角终边落在象限内,由 图可知sincos =ON+OM=PM+OM =OP=1 若角的终边落在轴上 则|sin|和|cos|必有一个为1,另一个为0,sincos1 课堂小结课堂小结1、单位圆:半径为单位长度的圆2、三角函数线:(1)正弦线(2)余弦线(3)正切线3、三角函数线的应用

    注意事项

    本文(三角函数的几何表示.ppt)为本站会员(s****8)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开