2023年传感器应用总结.docx
2023年传感器应用总结 传感器应用总结 信息社会高速发展的今天,人们对信息的提取、处理、传输以及综合等要求愈加迫切。作为信息提取的功能器件传感器同人们的关系越来越密切。小到智能手机,大到地震海啸预警,传感器广泛应用于社会发展及人类生活的各个领域。传感器种类繁多,其原理也各种各样。传感技术是一门知识密集型技术,它与许多学科相关,传感器技术已经成为各个应用领域,特别是电子信息工程、电气工程、自动控制工程、机械工程等领域中不可缺少的技术。传感技术与信息技术、计算机技术并列称为支撑现代信息产业的三大支柱。下面,我将对所学传感器的应用做一个简要的总结。 传感器是在非电量测量中,能够实现非电量转化为电量的装置。传感器一般由敏感元件、转换元件和测量电路三部分组成,有时还需要加辅助电源。(如图1)在自动检测和自动控制环节,传感器是必不可少的,没有传感器对数据的精确测量,必然不会实现对信号的控制及显示。因此,传感器在工业生产以及日常生活中应用广泛。 非电量 敏感元件 非电量 传感元件 电量 转换电路 电量 1 热电偶传感器 图1 1.1 N型热电偶在主蒸汽温度测量中的应用 近年来,N型热电偶在火电厂得到了广泛的应用。N型热电偶在中子辐射环境下具有良好的稳定性, 是因为N型热电偶去除了易蜕变元素Mn、Co等。因此,N型热电偶具有很好的耐核辐射的能力。在一个机组主蒸汽管道上放一个温度保护套管,将N型热电偶放入其内部,测量的温度将其转化为电动势,通过控制电动势来控制温度。 1.2 热电偶对爆炸产物的热响应应用 在炸药的爆炸过程中,温度变化极快,数值极高,且为非稳态传热,冲击波的传播速度远大于热流的传播速度,热电偶技术的迅速发展为研究瞬态热作用提供了简便可靠的测试方法。热电偶温度传感器将温度信号转换为电压信号,经直 1 流电压放大器放大后通过A/D 转换电路将模拟信号转换为数字信号。采集系统将给出电压值,其变化反映热电偶温度值的变化。数据采集后对信号加以滤波处理,然后根据分度表进行温度转换。 1.3 薄膜热电偶传感器测高温物体表面温度 薄膜热电偶(T F T C)作为固体表面温度传感器具有许多优点,其很小的质量使其对表面热传导的干扰极小,对于大多数实际测量而言,被测点的这一热变化是微乎其微的;由于厚度仅为1um 的薄膜对于多数对流换热应用来说尺寸很小, 所以薄膜热电偶与被测表面之间的对流换热变化也极其微小。另一方面,由于自身构造上的特点,薄膜热电偶传感器可以贴在某些需要测量温度但又不方便直接测温的物件上。 2 压电传感器 2.1 车辆行驶称重 压电传感器检测经过轮胎施加到传感器上的压力,产生成正比的模拟电压、信号,输出压力信号的周期与轮胎停留在传感器上的时间相同。每当一个轮胎经过传感器时,传感器就会产生一个新的电子脉冲,压电传感器在行驶中称重(WMI)的检测原理是对受力产生的信号积分。 2.2 实现超声振动系统的频率自动跟踪 在振动系统设计中加入压电传感片,压电传感片保持与系统谐振。由于压电效应,谐振时压电传感片两端会产生电荷,形成感应电压。这种电压大小与振动强弱成正比,通过检测电压值就能知道振动幅值的大小。感应电压最大值的频率点即为系统谐振点,通过搜寻感应电压最大值就能实现频率自动跟踪。 2.3 环境监测 2.3.1压电石英晶体微天平(QCM) 压电传感器 当一层外来物沉积于石英晶体表面时,晶体的表面质量增加,从而引起谐振频率的变化。 2.3.2 表面声波 (SW)压电传感器 SW压电传感器是利用表面声波原理实现质量测定的。当ST切型石英晶体中电极的交叉阵列产生局部形变时,后者以机械波传递至接受器阵列,发出的波与任何表面材料的相互作用均能改变SW的速度和振幅,于是能定量测定沉 2 积物的质量。 2.4 确保刀具工作在安全振幅范围内 通过压电传感片返回的电压值大小,系统可以推算出刀具的工作振幅。预先设定安全振动幅值,限制输出功率的大小,就能起到保护刀具的作用。实际采用这种措施以后,刀具的工作寿命得到明显提高。这主要是因为刀具刀齿造成应力高度集中,如不限制振幅,空载或轻载时刀具振幅过大,刀齿的应力超过了安全许可界限,在超高周疲劳情况下很快就达到疲劳极限,引起刀具断裂。 3 电阻传感器 3.1应变式压力传感器 这种传感器可以测量气体或液体压力。当气体或液体压力作用在薄板承压面上时,薄板变形,粘贴在另一面的电阻应变片随之变形,并改变阻值。这时测量电路中电桥平衡被破坏,产生输出电压。此外,它还可以用来制造测量高度、密度、速度的仪表。应变式压力传感器常见的结构有筒式、膜片式和组合式等。 3.2 应变式加速度传感器 这种传感器的基本结构由悬臂梁、应变片、质量块、机座外壳组成。悬臂梁(等强度梁)自由端固定质量块,壳体内充满硅油,产生必要的阻尼。当壳体与被测物体一起作加速度 a 运动时,质量块因为在惯性作用下保持相对静止,从而给悬臂梁一个与运动方向相反的作用力,使梁体发生形变,粘贴在梁上的应变片阻值发生变化,电桥平衡被破坏,电桥输出电压。通过测量阻值的变化求出待测物体的加速度。 3.3 热电阻式温度传感器 3.3.1 金属热电阻传感器 对于金属导体而言,在一定的温度下,物质的电阻随电阻率的变化而变化,可以把温度对电阻率的影响反映到电阻上,即温度变化会导致电阻变化,从而测出温度变化。 3.3.2 半导体热电阻传感器 半导体是一种晶态固体,其原子结构较为特殊,外层的电子运动时既不像金属导体那样容易脱离原轨迹,也不像绝缘体那样束缚的很紧,这就决定了它的导电特性介于金属导体和绝缘体之间。其导电机理与材料内价电子以及掺人的杂质 3 有关。电阻取决于掺杂的种类和浓度,并随温度而变化,通过测量电阻的变化而得到温度的改变。 4 电感式传感器 4.1 自感式传感器 自感式传感器是利用自感量随气隙变化而改变的原理制成的,用来测量位移。自感式传感器主要有闭磁路变隙式和开磁路螺线管式,它们又都可以分为单线圈式与差动式两种结构形式。 线圈的自感量等于线圈中通入单位电流所产生的磁链数,只要被测非电量能够引起空气隙长度或等效截面积发生变化,线圈的电感量就会随之变化。自感式传感器的测量电路用来将电感量的变化转换成相应的电压或电流信号,以便供放大器进行放大,然后用测量仪表显示或记录。自感式传感器用于测量位移,还可以用于测量振动、应变、厚度、压力、流量、液位等非电量。 4.2 差动变压器式传感器 差动变压器式传感器是把差动变压器的两个次级输出电压分别整流,然后将整流的电压或电流的差值作为输出,这样二次电压的相位和零点残余电压都不必考虑。 差动整流电路同样具有相敏检波作用,两组(或两个)整流二极管分别将二次线圈中的交流电压转换为直流电,然后相加。由于这种测量电路结构简单,不需要考虑相位调整和零点残余电压的影响,且具有分布电容小和便于远距离传输等优点,因而获得广泛的应用。但是,二极管的非线性影响比较严重,而且二极管的正向饱和压降和反向漏电流对性能也会产生不利影响,只能在要求不高的场合下使用。 一般经相敏检波和差动整流后的输出信号还必须经过低通滤波器,把调制的高频信号衰减掉,只允许衔铁运动产生的有用信号通过。 差动变压器不仅可以直接用于位移测量,而且还可以测量与位移有关的任何机械量,如振动、加速度、应变、压力、张力、比重和厚度等。 4.3 涡流式传感器 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体内将产生呈涡旋状的感应电流,此电流叫电涡流,这种现 4 象称为电涡流效应。 根据电涡流效应制成的传感器称为电涡流式传感器。按照电涡流在导体内的贯穿情况, 此传感器可分为高频反射式和低频透射式两类,但从基本工作原理上来说仍是相似的。电涡流式传感器最大的特点是能对位移、厚度、表面温度、速度、应力、材料损伤等进行非接触式连续测量,另外还具有体积小、灵敏度高、频率响应宽等特点,应用极其广泛。 线圈阻抗的变化完全取决于被测金属导体的电涡流效应。 而电涡流效应既与被测体的电阻率、磁导率以及几何形状有关,又与线圈几何参数、线圈中激磁电流频率w有关,还与线圈与导体间的距离x有关。因此,传感器线圈受电涡流影响时的等效阻抗Z的函数关系式为Z=F(,R,x)。 涡流式传感器的特点是结构简单,易于进行非接触的连续测量,灵敏度较高,适用性强。利用位移x作为变换量,可以做成测量位移、厚度、振幅、振摆、转速等传感器,也可做成接近开关、计数器等。利用材料电阻率r作为变换量,可以做成测量温度,材质判别等传感器。利用导磁率m作为变换量,可以做成测量应力,硬度等传感器;利用变换量x、r、m等的综台影响,可以做成探伤装置。 5 电容传感器 5.1电容式位移传感器 电容式位移传感器可以实现非接触测量,用来测量各种导电材料的间隙、长度、尺寸或位置、振动位移等。CapaNCD(非接触电容位移传感器)测量原理的基础在于理想平板电容的构成,两个平板电极由传感器和相对应的被测体组成,当恒定的交流电加在传感器电容上时,传感器产生的交流电压与电容电极之间的距离成正比,交流电压经检波器,与一个可设置的补偿电压叠加,经放大,作为模拟信号输出。capaNCDT610是一个精密的单通道系统,它由电容位移传感器,传感器电缆和处理信号的前置器组成,用户可以在现场用二点线性化方法校准。这种传感器的特点是工作时无磨损,免维修、对被测体没有作用力、具有高的零点稳定性和精度、与被测体导电性能以及导电性能变化无关而且几乎不受温度影响。capaNCDT610可输出010V的电压,在牺牲精度的情况下,测量范围还可 5 以扩大23倍。 5.2电容式物位传感器 电容式物位传感器有两个导电极板(通常把容器壁作为一个电极),由于电极间是气体、液体或固体而导致静电容发生变化,因而可以敏感物位。它的敏感元件有三种形式,即棒状、板状和线状,其工作温度、压力主要受绝缘材料的限制。电容式物位传感器可以采取微机控制,实现自动调整灵敏度,并具有自诊断功能,同时能够检测敏感元件的破损、绝缘性的降低、电缆和电路的故障等,并可以自动报警,实现高可靠性的信息传递。由于电容式传感器无机械可动部分,且敏感元件简单,操作方便,是目前应用最广的一种物位传感器。 5.3固态电容式指纹传感器 传感器技术的发展,人们利用电容式传感器对指纹进行识别,从而识别人的身份,可靠性大大提高,广泛应用于养老金领取、人事工资管理、银行柜员身份确认等很多场合。目前市场上有两种固态指纹传感器,第一种是单次触摸型传感器,要求手指在采集区进行可靠的触摸;第二种则需要用手指在传感器表面擦过,传感器会采集一套特定的数据进行快速分析和认证。这两种指纹传感器都是利用指纹中凸起的部分置于传感器电容像素电极时电容量会有所增加,从而通过检测增加的电容来进行数据采集的。目前这两种指纹传感器都得到了广泛的应用。 6光电传感器 6.1 烟尘浊度监测仪 为了消除工业烟尘污染,首先要知道烟尘排放量,因此必须对烟尘源进行监测、自动显示和超标报警。烟道里的烟尘浊度是用通过光在烟道里传输过程中的变化大小来检测的。如果烟道浊度增加,光源发出的光被烟尘颗粒的吸收和折射增加,到达光检测器的光减少,因而光检测器输出信号的强弱便可反映烟道浊度的变化。 6.2感烟传感器 ( 火灾报警器的一部分 ) 由红外发光二极管及光电三极管组成,但二者不在同一平面上(有一定角度)。在无烟状态时,光电三极管接收不到红外线;当发生火灾时,产生大量烟雾,烟雾粒子进入感烟传感器时,由于红外线受烟雾粒于折射作用,光电三极管接收到红外线,给出烟雾报警信号。 6 6.3 光控大门 光控大门需要要用到一种电子元件干簧继电器,它由干簧管和绕在干簧管外的线圈组成。当线圈内有电流时,线圈产生的磁场使密封在干簧管内的两个铁质簧片磁化,两个簧片在磁力作用下由原来的分离状态变成连接状态,线圈内没有电流时,磁场消失,瓷片在弹力的作用下,回复到分离状态。把光敏电阻装在大门上汽车灯光能照到的地方,把带动大门的电动机接在干簧管的电路中,那么夜间汽车开到大门前,灯光照射光敏电阻时,干簧继电器接通电动机电路,电动机带动,大门打开。 6.4 液位检测 在液体未升到发光二极管及光电三极管平面时,红外发光二极管发出的红外线不会被光电三极管接收;当液位上升到发光二极管及光电三极管平面时,出于液体的折射,光电三极管接收到红外信号由此获得液位信号。 6.5电影放音 拍摄电影时的配音,是把声音信号转换为光信号,用明暗不同的条纹记录在胶片边缘的声带上。在放映电影时,光源发出的光通过移动的声带后发生了强弱的变化,并被光电管所接收,光电管把强弱变化的光相应地转变为强弱变化的电流,经放大器放大后,由扬声器放出声音。 6.6 转速测量 在工业生产中,对转速的检测应用的非常多,尤其是在电机控制领域,将光电传感器应用到转速测量里是运用将转速变换成光通量的变化,再经过光电元件转换成电量的变化即可得到转速的原理。 首先在被测的转动轴上装上光电编码器,它是由光栅盘和光电检测装置组成,编码器随轴转动,当光线通过编码器的夹缝时,光电检测装置就会产生一个电脉冲,转轴连续转动,光电元件就输出一列与转速成正比的电脉冲数。在孔X或齿Y数一定时,脉冲数就和转速成正比。如果调制盘上的孔数为x,测量的时间为t 秒,脉冲数为N,此时被测转速为n(r/min)为:n=60N/xt。 7霍尔传感器 7.1 霍尔式汽车点火器 这种点火器与传统点火器不同,具有点火能量高、高速点火可靠、故障率低、 7 耗油省等优点。霍尔式电子点火系统主要由点火信号发生器、电子点火组件、点火线圈、点火开关和蓄电池等组成。点火信号是由分电器中的霍尔传感器提供的。将开关型霍尔传感器固定在分电器外壳内侧,当分电器的转轴转动时,就带动叶片一起转动,叶片里面有磁铁,且叶片上开有窗口,因此霍尔器件所处磁场的磁场强度大小是突变的,其输出电压也突变,输出为脉冲信号。当汽车气缸中的活塞运行到达上止点时,霍尔电路输出低电平,从而改变了电流方向而流入霍尔电路,故晶体管截止。储存在电感中的磁能就在电路中振荡起来,形成200V以上的交流电压。此电压经点火线圈升压后产生高压电送至相应气缸的火花塞产生电火花,点燃气缸中的燃油。随着汽车发动机旋转,上述过程周而复始。 7.2磁场的测量 由霍尔效应可知,当控制电流I0保持不变时,霍尔电势UH与所感受到的磁感应强度B成比例关系,所以,霍尔传感器所处位置的磁感应强度不同,输出的电压值就不同。根据输出电压的大小可测出磁感应强度的值。将霍尔传感器放置在不同的位置,由于磁感应强度不同,将输出不同的电压信号。 7.3位移的测量 霍尔电势与位移量x成线性关系,并且霍尔电势的极性反映了元器件位移方向。同时还表明,当x=0时,U=0。利用这一特点可把作微量移动的物体与霍尔传感器固定在一起,当物体在均匀变化的磁场中相对B=0的位置(磁场的中心)发生x的位移量时霍尔传感器输出一定的电压信号,根据信号的大小和方向可测出物体移动的大小和方向。 7.4不等位电势测量 测量不等位电势时,按照不等位电势的概念进行,使得霍尔元件位于同极性相对放置两块永久磁钢的正中间,不使用电气零位(RW1为零),直接测量霍尔元件的输出电压,约40mV。 传感器应用总结 传感器总结 传感器总结 传感器总结 传感器的军事应用 传感器原理与应用 传感器的应用论文 传感器的应用教案 传感器的应用教案 传感器