欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    线性代数课件第三章矩阵的秩.ppt

    • 资源ID:66692723       资源大小:963KB        全文页数:44页
    • 资源格式: PPT        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    线性代数课件第三章矩阵的秩.ppt

    三、矩阵秩的性质三、矩阵秩的性质证证 因为因为例例7 7 设设A A为为n n阶矩阵,证明阶矩阵,证明而而所以所以,三、小结(2)(2)初等变换法初等变换法1.矩阵秩的概念矩阵秩的概念2.求矩阵秩的方法求矩阵秩的方法(1)(1)利用定义利用定义(把矩阵用初等行变换变成为行阶梯形矩阵,把矩阵用初等行变换变成为行阶梯形矩阵,行阶梯形矩阵中非零行的行数就是矩阵的秩行阶梯形矩阵中非零行的行数就是矩阵的秩).(即寻找矩阵中非零子式的最高阶数即寻找矩阵中非零子式的最高阶数);3.3.矩阵秩的性质矩阵秩的性质思考题思考题解答答答答答相等相等.即即由此可知由此可知三、小结三、小结一、线性方程组有解的判定条件一、线性方程组有解的判定条件二、线性方程组的解法二、线性方程组的解法3-4 3-4 线性方程组的解线性方程组的解一、线性方程组有解的判定条件问题:问题:证证必要性必要性.(),nDnAnAR阶非零子式阶非零子式中应有一个中应有一个则在则在设设=(),根据克拉默定理根据克拉默定理个方程只有零解个方程只有零解所对应的所对应的 nDn从而从而这与原方程组有非零解相矛盾,这与原方程组有非零解相矛盾,().nAR 即即充分性充分性.(),nrAR=设设.个自由未知量个自由未知量从而知其有从而知其有rn-任取一个自由未知量为,其余自由未知量为,任取一个自由未知量为,其余自由未知量为,即可得方程组的一个非零解即可得方程组的一个非零解.证证必要性必要性,有解有解设方程组设方程组bAx=()(),BRAR 设设则则B B的行阶梯形矩阵中最后一个非零行对应矛盾的行阶梯形矩阵中最后一个非零行对应矛盾方程,方程,这与方程组有解相矛盾这与方程组有解相矛盾.()().BRAR=因此因此并令并令 个自由未知量全取个自由未知量全取0 0,rn-即可得方程组的一个解即可得方程组的一个解充分性充分性.()(),BRAR=设设()()(),nrrBRAR=设设证毕证毕其余其余 个作为自由未知量个作为自由未知量,把这把这 行的第一个非零元所对应的未知量作为行的第一个非零元所对应的未知量作为非自由未知量非自由未知量,小结小结有唯一解有唯一解bAx=()()nBRAR=()()nBRAR=有无穷多解有无穷多解.bAx=齐次线性方程组齐次线性方程组:系数矩阵化成行最简形矩阵,:系数矩阵化成行最简形矩阵,便可写出其通解;便可写出其通解;非齐次线性方程组:非齐次线性方程组:增广矩阵化成行阶梯形矩增广矩阵化成行阶梯形矩阵,便可判断其是否有解若有解,化成行最阵,便可判断其是否有解若有解,化成行最简形矩阵,便可写出其通解;简形矩阵,便可写出其通解;例例1 1 求解齐次线性方程组求解齐次线性方程组解解二、线性方程组的解法即得与原方程组同解的方程组即得与原方程组同解的方程组由此即得由此即得例例 求解非齐次线性方程组求解非齐次线性方程组解解对增广矩阵对增广矩阵B进行初等变换,进行初等变换,故方程组无解故方程组无解例例 求解非齐次方程组的通解求解非齐次方程组的通解解解 对增广矩阵对增广矩阵B进行初等变换进行初等变换故方程组有解,且有故方程组有解,且有所以方程组的通解为所以方程组的通解为例例 解证解证对增广矩阵对增广矩阵B进行初等变换,进行初等变换,方程组的增广矩阵为方程组的增广矩阵为由于原方程组等价于方程组由于原方程组等价于方程组由此得通解:由此得通解:例例 设有线性方程组设有线性方程组解解其通解为其通解为这时又分两种情形:这时又分两种情形:()()nBRAR=()()nBRAR=有无穷多解有无穷多解.bAx=非齐次线性方程组非齐次线性方程组齐次线性方程组齐次线性方程组三、小结思考题思考题解答解解故原方程组的通解为故原方程组的通解为初等变换的定义换法变换换法变换倍法变换倍法变换消法变换消法变换初等变换 逆变换三种初等变换都是可逆的,且其逆变换是三种初等变换都是可逆的,且其逆变换是同一类型的初等变换同一类型的初等变换反身性反身性传递性传递性对称性对称性矩阵的等价三种初等变换对应着三种初等矩阵三种初等变换对应着三种初等矩阵初等矩阵由单位矩阵经过一次初等变换得到的矩阵称由单位矩阵经过一次初等变换得到的矩阵称为初等矩阵为初等矩阵()换法变换:对调两行(列),得初等()换法变换:对调两行(列),得初等矩阵矩阵()倍法变换:以数(非零)乘某行()倍法变换:以数(非零)乘某行(列),得初等矩阵列),得初等矩阵()消法变换:以数乘某行(列)加到另()消法变换:以数乘某行(列)加到另一行(列)上去,得初等矩阵一行(列)上去,得初等矩阵经过初等行变换,可把矩阵化为行阶梯形矩经过初等行变换,可把矩阵化为行阶梯形矩阵,其特点是:可画出一条阶梯线,线的下方全阵,其特点是:可画出一条阶梯线,线的下方全为为0 0;每个台阶只有一行,台阶数即是非零行的;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线(每段竖线的长度为一行)行数,阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也就是非零行的第后面的第一个元素为非零元,也就是非零行的第一个非零元一个非零元例如例如行阶梯形矩阵

    注意事项

    本文(线性代数课件第三章矩阵的秩.ppt)为本站会员(wuy****n92)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开